

Charge Sharing on Monolithic CdZnTe Gamma Ray Detectors: A Simulation Study

E. Gros d'Aillon, L. Verger, J. Tabary, A. Glière

Context and outline

Factor degrading performances of monolithic CdZnTe detectors (tailing)

- Interaction depth dependence of induced signal Affecting energy resolution
- Charge sharing between adjacent pixels
 Affecting energy resolution or efficiency

CdTe / CdZnTe Gamma Ray pixelated detectors

- Typical energy 122 keV (57Co medical energy)
- Typical pitch 2.5 mm (between 0.2 to 3 mm)
- Typical thickness 5 mm

Outline

- Ulysse : 3D simulator of CZT gamma ray spectrometrer
- γ ray matter interaction \rightarrow size of the the **deposited cloud**
- Physic phenomena in **detectors** \rightarrow measured charge sharing
- First comparison with experimentation

Signal processing module developed in Fortran and integrated in Ulysse :

γ ray matter interactions

- Photoelectric : 82 %
 - Non radiative (Auger electrons)
 - Radiative X : Te 27 31 keV ; Cd 23 26 keV Zn 8 - 10 keV
- Compton scattering : 11%
- Rayleigh scattering : 7%
- Interaction
 Interaction +

induction

3. Comparison with experimentation

Nb secondary photon	Ratio	Mean distance
0 (Auger)	25 %	0 µm
1 fluorescence	45 %	75 µm
2 fluorescences	25 %	111 µm
> 2 fluorescences	5 %	118 µm
Mean distance X photons	75 %	90 µm
Mean distance (all)	100 %	67 µm

projected distance

E. Gros d'Aillon IWORID Session 5 July 6 2005 4

Electron cloud size at its creation

Monte Carlo study: the deposit cloud

The distance to which charge sharing occurred is 500 μ m. Charge sharing is important for 80 μ m (FWHM).

Results Generalization ...

• for other photon energy :

- cross section ratio depends on energy : photoelectric ratio : 140keV 78% ; 122keV 83% ; 60keV 95%
- X fluorescence occurred until 32 keV (Kedge)

• for other threshold:

- low effect as long as threshold < Kedge
- 2. Interaction +

1. Interaction

- induction
- 3. Comparison with experimentation
 - for other pitch (irradiation on the full detector surface) :
 - shared events ratio increases up to 75 % (Auger)
 - then reach a plateau until 10 µm (photoelectron)

Electron cloud diffusion in the detector

Nuclear medicine : E= 140 keV , CdTe thickness = 5 mm, V = 300 - 1000 V $\rightarrow \sigma_D$ = 120 - 220 µm FWHM

Simulation of the detector: CIE computation

Computation of the Induced Charge on each electrode

Detector simulation

Bias 400 V Electron life time 3 µs Electron mobility 1000 cm²/V/s

1. Interaction

2. Interaction + induction

3. Comparison with experimentation Applied potential charge transport

Weighting potential charge induction

 $\vec{\nabla}\varepsilon\vec{\nabla}\psi=0$

τ	1 - 5 µs	electron lifetime
σ	$10^{-9} \ \Omega^{-1} \text{cm}^{-1}$	conductivity
ε _r	11	permittivity
μ_{n}	0.1 m ² V ⁻¹ s ⁻¹	electron mobility
G	cm ⁻³ s ⁻¹	electron generation

approximations: conductivity and trapping are homogeneous in the bulk

Charge Induction Efficiency Ratio measured charge on deposited charge

$$CIE = \frac{Q}{Q_0} = \iint_t \left(\iiint_{\Omega} q \mu_n n \vec{\nabla} \varphi \, \vec{\nabla} \psi \, d\Omega \right) dt$$

The CIE map contains the whole information to model the detector (i.e. signals induced by an interaction in any point in the detector)

The Charge Induction Efficiency

Induction mechanism and electron cloud diffusion

E photon = 122 keV Threshold = 15 keV

Monolithic detector thickness 5 mm Pixel 2 x 2 mm, 2.5 mm pitch

Diffusion enlarge charge sharing area from 80 µm to 210 µm FWHM

CIE [Induced charge : Monte Carlo + detector e

charge sharing : 210 µm FWHM recall : diffusion = 190 µm FWHM

Monte Carlo and detector study

Monolithic detector thickness 5 mm Pixel 2 x 2 mm, 2.5 mm pitch

In this situation, the main effect on charge sharing is electron cloud diffusion

œ

Monte Carlo study: the deposit cloud

Monolithic detector thickness 5 mm Pixel 2 x 2 mm, 2.5 mm pitch

The charge sharing distance occurred in $500 \ \mu m$.

Charge sharing is important for **80 µm** (FWHM).

Results Generalization

• for other detector geometry :

- gap : no effect on charge sharing (if it is insulating)
- thickness and bias : little effect on diffusion
- pitch and thickness \rightarrow pixel effect

- 1. Interaction
- 2. Interaction + induction
- 3. Comparison with experimentation
- for other pitch (irradiation on the full detector surface) :
 - charge sharing increases drastically for pitch < 1 mm

Simulation with a 500 µm collimator

Bias 400 V Electron life time 3 μs Electron mobility 1000 cm²/V/s

E photon = 122 keV Threshold = 15 keV Charge sharing FWHM : 570 μm to compare to 210 μm with a straight source

Collimator width will hide other effects

Monolithic detector thickness 5 mm Pixel 2 x 2 mm, 2.5 mm pitch

Collimator Pb 500 µm

Experimentation with a 500 µm collimator

1. Interaction

2. Interaction + induction

3. Comparison with experimentation

HPBM CZT monolithic detector thickness 5 mm Pixel 2 x 2 mm, 2.5 mm pitch

Bias 400 V

E photon = 122 keV Threshold = 15 keV

Collimator Pb 500 µm

Simulation : charge sharing FWHM = 570 μ m

γ_>

3

Events measured by more than one anode

On the full area 10 % of events are shared Recall : in simulation 13 % of event measured as shared

Conclusion

Monte Carlo Study only : the deposit cloud

Gamma ray – matter interaction

Photoelectric effect : 82 % :

Mean distance of fluorescence (75 %) 90 μm Mean distance (all) 67 μm

Photoelectron range 10 µm

• Fluorescence

For photoelectric effect considering photoelectron range

50 % of events : size inferior to 36 µm

80 % of events : size inferior to 120 μm

90~% of events : size inferior to 190 μm

For all events, charge sharing FWHM 80 μ m (\rightarrow 500 μ m)

• Pixilated detector

For a 2.5 mm pitch detector

- At 122 keV : 5.3 % of events are shared
- At 60 keV : 3 % of events are shared

E photon = 122 keV Threshold = 15 keV

Monolithic detector thickness 5 mm Pixel 2 x 2 mm, 2.5 mm pitch

Bias 400 V Electron life time 3 µs mobility 1000 cm²/V/s

Monte Carlo + Induction in the Detector

• Diffusion enlarge charge sharing to 210 µm FWHM

Pixilated detector

For a 2.5 mm pitch detector

- At 122 keV : 13 % of event as shared (10% experimentally)
- At 60 keV : 8% of events are shared

thank you for your attention

Diffusion, thickness and bias

Diffusion is independent of thikcness and bias because bias is choose to collect charge (mean free path >> thickness) But bias must not be too high to limit noise

Diffusion
$$\sigma_D = \sqrt{\frac{4DL^2}{\mu V}}$$

mean free path >> thickness

$$\frac{\mu\tau V}{L} >> L \quad \Longrightarrow \quad \frac{\mu\tau V}{L} \approx \alpha L \Longrightarrow V \approx \alpha L^2 / \mu\tau$$

Diffusion

$$\sigma_D^2 = 4D\tau/\alpha$$

Spectroscopy

MVB CZT monolithic detector thickness 5 mm Pixel 2 x 2 mm, 2.5 mm pitch

Bias 700 V

E photon = 122 keV Threshold = 15 keV

Collimator Pb 500 µm / 3mm

Energy (#)

Treatments

Distinction between charge sharing and charge loss

