PIXSCAN CT-scanner for Small Animal Imaging Based on hybrid pixel detectors

Centre de Physique des Particules de Marseille (CPPM-IN2P3), France

S. Basolo, A. Bonissent, P. Breugnon, <u>J.C. Clemens</u>, P. Delpierre, B. Dinkespiler, R. Khouri, I. Koudobine, C. Meessen, M. Menouni, C. Morel, P. Pangaud, E. Vigeolas

CNRS Grenoble & D2am CRG beam-line, France

J.F. Berar, N. Boudet, B. Caillot, C. Mouget

CREATIS, UMR-CNRS-5515, INSERM-U630, Lyon, France

F. Peyrin, D. Sappey-Marinier, S. Valton

Institut de Biologie du Développement de Marseille (IBDM), France F.Debardieux, F.Mann, G. Rougon

Summary

➢Interest of hybrid pixels for X-rays

- Large surface X-ray detector
- Validation with crystallography
- ≻Scanner-CT prototype
- >Ongoing work for the final version
- ≻Prospective : PET-CT

Interest of HPS for X-ray imaging

What we do not have with CCD's or CMOS pixels (APS)

Photon counting

Noise suppression electronic et physic
 Energy selection
 Large dynamic range, flux et luminosity

contrast improvement

Very fast data acquisition (< 2 ms)
 Choice of the sensor substrate (Si, CdTe, AsGa)
 Maximum efficiency =>Dose reduction

Small Animal Imaging

IWORID, 4-7 july 2005

X-ray detector

XPAD2 Pixels 330 x 330 µm² 15-bit Counter linear until 10⁶ ph/sec/pixel

Si sensor

Thickness 500µm

65 x 8 mm²

- 1. Readout of pixel counter overflows during exposure
- Addition in an external 16-bit counter
 => Dynamic range: 2.10⁹
- 3. Storage in memory chips => 423 images

Large surface X-Ray PixelDetector

8 modules tiled 6,8 x 6,5 cm² HPS Detector

Pixels size: 330 x 330 µm²

400 images, 2 ms gap

Crystallography

XPAD / Ph + CCD Small angle diffusion

Much better separation between air/water (No noise)

PIXSCAN Prototype

PIXSCAN Prototype

Tomographic images

Cone beam tomographic reconstruction by FDK algorithms (collaboration with CREATIS, Lyon, France)

360 projections (1 per degree)

Phantom => geometry

One slice

Ongoing work for the next CT-scanner

Goals :

- Pixel size = 125 µm
- Energy selection => double threshold
- Dynamic range ~ infinite
 Continuous readout during exposure
 Noise suppression
- Time gap between images < 1 msec => very fast image transfer
- Dose reduction

Efficiency > 95% at 50 keV (for CdTe and gap < 1 msec)</p>

• Gamma (511 keV) absorption < 2% => 300 µm CdTe

XPAD3

New chip, the XPAD3, technology 0,25 µm

- 125 µm,120 x80 pixel matrix
- Double threshold (windowing)
- Radiation hard
- 12-bit counter/pixel + overflow
- Fast image reading :1000 Frame /s

120 cells test chip done : Good analog and digital results

Complete XPAD3 : Design under work

1 x 1,5 cm²

First version to be submitted in sept. 2005

Sensor => CdTe

clemens@cppm.in2p3.fr

PET-CT

PET + CT-scan Simultaneous imaging several CT images during the PET

Anatomic image + functional image (tumors)

Without positioning problems

PET data correction for absorption and for movements during PET exposure

CLEARPET

CLEARPET from Lausanne (C. Morel)

To be installed at Marseille (CPPM)

Conclusion

A large surface X-Ray Hybid Pixel Detector has been built It is in use for : Crystallography:

•saving a factor of 20 / slit + PM scan

•Noise improvement / CCD

CT-scan (PIXSCAN):

•400 images separated by 2 ms

•Starting tomographic images

New chip in submicronic technology under design for a pixel size of 125 µm and CdTe sensor

End 2006

Mid. 2007

Plans:

- First version PIXSCAN (Silicium) June 2006
- Final PIXSCAN (CdZnTe)
- Simultaneous PET-CT

IWORID, 4-7 july 2005

Mouse tomographic image

