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A demonstration a portable radiation A demonstration a portable radiation 
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Hybrid Pixel Detector 
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Hybrid Pixel Detector  - Cross Section
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A (by now rather old) pixel detector array

36 000 pixels

6 ladders of 6 chips

Each chip has 1000 
pixels

2 arrays make up one 
logical plane

[E. Heijne, E. Chesi]

Work carried out by RD19 for WA97. 
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Hybrid pixel detector arrangement in a fixed 
target heavy ion experiment (CERN WA97 )

Pb ion

Pb
Target
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CERN Experiment WA97 (1995)

5 x 5 cm2 area
7 detector planes
~  0.5 M pixels 
Pixel dimensions 75 x 500 µm2

Trigger precision 1 µsec
1 kHz trigger rate

NO hits unassociated with 
particle tracks => WHY??
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Minimum Ionizing Particle in Si Pixel 
Sensor

+++++++++++++++++++

-------------------

~ 80 electron-hole 
pairs per µm

50 µm

300 µm
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Minimum Ionizing Charge Deposition in Si
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Typical Front-end for HEP Pixel
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Because of charge sharing between pixels the threshold is 
normally set around 1/3rd Landau peak while maintaining 
optimum detection efficiency and spatial resolution

Signal, Threshold, Noise

Landau for 300 µm 
detector

Threshold and 
threshold variation

Noise
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Noise hit rate for a discriminator with 
bandwidth, fb
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Qth = threshold
σn = noise 

(It can be shown that σth - the threshold variation - adds 
to σn quadratically on the denominator.) 
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Noise hit rate for a discriminator with 
bandwidth, fb

In a large bandwidth system (such as an HEP experiment) 
noise and threshold must be well separated to produce clean 
event information.

The same separation provides practically noise-free images in 
radiation imaging applications

100
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Pixels for High Energy Physics

In a high multiplicity environment pixel In a high multiplicity environment pixel 
detectors are crucial to pattern recognition. detectors are crucial to pattern recognition. 
Technical choices are bound by this. Technical choices are bound by this. 

In low multiplicity environments signal to In low multiplicity environments signal to 
noise constraints can be relaxed leading to noise constraints can be relaxed leading to 
simpler lower power solutions. simpler lower power solutions. 
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Pixels for Imaging Radiation Detectors

FrontFront--end noise is rejected due to high end noise is rejected due to high 
threshold to noise ratiothreshold to noise ratio
Detector leakage current can be Detector leakage current can be 
compensated for pixelcompensated for pixel--by pixelby pixel
Image quality becomes dose rate Image quality becomes dose rate 
independent (limited only by background at independent (limited only by background at 
low rates and by pile up at high rates)low rates and by pile up at high rates)

In future CMOS scaling may be useful to In future CMOS scaling may be useful to 
make bad detectors more uniform…make bad detectors more uniform…
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Moore’s law and developments in 
CMOS

CMOS is the workhorse for the entire CMOS is the workhorse for the entire 
microelectronics industrymicroelectronics industry
Other technologies (e.g. bipolar, Other technologies (e.g. bipolar, SiGeSiGe, , 
GaAsGaAs) are used in niche applications but ) are used in niche applications but 
none can compete with CMOS in terms of none can compete with CMOS in terms of 
yield, component density and chip size.yield, component density and chip size.
Experience from the LHC developments Experience from the LHC developments 
indicates that CMOS is the only viable indicates that CMOS is the only viable 
solution for large scale systemssolution for large scale systems
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Transistor feature size
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Components per processor chip
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Metal layers
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Power supplies
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Power per processor chip
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Design Considerations for pixel chip 
design

Noise should be minimized
series noise parallel noise

high gm (! power) fast shaping

Preamp and discriminator should be fast 

high gm (! power!)

Transistor matching 

! good matching requires large area transistors
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Design Implications of further scaling- general -
positive aspects

I/f noise decreases

Matching improved for constant dimensions:

Av = 1mV per nm of gate thickness micron*

Many more digital transistors per unit area

WL
AV v

th

2
2 )( ∝σ

* H.Tuinhout, “Matching of NMOS Transistors,” Short Course on Deep Submicron
Modeling and Simulation, 12-15 Oct. 1998, EPFL, Lausanne, Switzerland
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Design Implications of further scaling- general - Vt
reduction

Log(Ids)

Vgs

Vt goes down, but weak inversion slope is constant.
Dynamic range limited
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Design Implications of further scaling- general -
square law region disappears

Ids

exp
square

linear 
(vel. sat.)

Ids

exp square

linear
(vel. sat.)

VgsVgses Vgssv VgsesVgssv Vgs

Vgssv - Vt = 4nLvsat/uVgses - Vt = 2nkT/q

W.Sansen, “Low Voltage, low power analog CMOS design,” Short Course on low 
voltage, low power analog CMOS IC design, June 21-25 1999, EPFL, Lausanne, 
Switzerland.

Input devices will operate in Weak Inversion
gm = Id/nUT
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Power Supply Voltage and Transistor 
Threshold

Stacking of transistors in one branch becomes difficult
Y.Taur, D.A.Buchanan, W.Chen et al., “CMOS Scaling into the 
Nanometer Regime, Proceedings IEEE, Vol 85 no4, 1997, pp.486-504
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Profile of a CMOS Tansistor

SiO2

Gate

Source Drain

STI STI
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IDS vs VGS
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IDS vs VGS
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Log (IDS) vs VGS
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Log (IDS) vs VGS
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IDS vs VGS
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gm/IDS vs log (IDS)
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gm/IDS vs log (IDS)
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CMOS design at present

Moving from 0.25 Moving from 0.25 µµm to 0.13 m to 0.13 µµm enables m enables 
many more transistors to be implemented many more transistors to be implemented 
on a single pixelon a single pixel
Multiple thresholds and counters are Multiple thresholds and counters are 
feasible even on a relatively small pixelfeasible even on a relatively small pixel
Analogue frontAnalogue front--end design is complicated end design is complicated 
by inherent limitations of the fastest by inherent limitations of the fastest 
devices and power supply limitationsdevices and power supply limitations
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Present day leading edge processes -1

Intel

[S. Thomson et al., IEDM, San Francisco, 8-11 Dec. 2002 (next 2 slides)]
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Present day leading edge processes -2

Intel
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Present day CMOS - 3

A 90nm CMOS Device Technology …. 
TSMC

Ids (off) = 50 nA/µm of gate length
Ig (leak) = 2.4nA/µm2 of gate area (5A/cm2 !)

[C.C. Wu et al., IEDM, San Francisco, 8-11 Dec. 2002]
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Technology drivers….

Household friends…Household friends…
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T. Kamimoto and T.T.Doi, IEDM, San Francisco, 8-11 Dec. 2002 
(next 4 slides)] 
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The Sony Vision - 1
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And they don’t stop at animals…
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The Sony Vision - 2

A team of Sony robots should beat the football World Cup 
champions in 2050….
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CMOS scaling - challenges

Front ends:
New front-end circuit topologies  are being developed
Designers must find a way through a zoo of possible devices and 
technology options

Digital circuits:
These become more complicated with every generation.
Existing tools don’t cover well high density mixed-mode design

Technology:
Prototyping costs are enormous 
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Charge sensitive preamplifier with individual leakage current compensation
2 discriminators with globally adjustable thresholds
3-bit local fine tuning of the threshold per discriminator
1 test and1 mask bit
External shutter activates the counter
13-bit pseudo-random counter
1 Overflow bit

Medipix2 Cell Schematic
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Medipix2 Pixel (Analog)

AmplifierAmplifier
IkrumIkrum MirroringMirroring
CL CL ≅≅ 1.3pF1.3pF
CfbCfb ≅≅ 8fF8fF
CTestCTest ≅≅ 8fF8fF
IampIamp ≅≅ 1uA1uA
IkrumIkrum ≅≅ 15nA15nA

DiscDisc
IdiscIdisc ≅≅ 3xIDISC3xIDISC
Analog outputAnalog output

Threshold AdjustThreshold Adjust
7 equal transistors:7 equal transistors:

Bit2: 4 Trts
Bit1: 2 Trts
Bit0:  1 Trt

8 8 ConfigConfig LatchesLatches
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Medipix2 Chip Architecture
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Threshold scan with a pencil beam in 
pixel centre
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Threshold scan with a pencil beam at 
various distances from pixel centre
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Spectrum of X-ray source using energy 
window

Raw sum of counts in all 64 000 pixels versus global threshold 

Sn in bump bond 63%

Spectroscopic 
information – insight 
into environment

Siefert FK-61-04x12 X-ray tube, W-target, 2.5 mm Al, Vpeak =  50 kV. 



5th July 2005 Michael Campbell

Cross section of a solder bump bond
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Images of a Swatch using the Energy 
Window
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Medipix2 Experience

Single photon counting is a reality Single photon counting is a reality –– see see 
demodemo
Noise free imaging possible over a large Noise free imaging possible over a large 
range of dose ratesrange of dose rates

Spectroscopic behaviour limited by charge Spectroscopic behaviour limited by charge 
sharing between pixelssharing between pixels
Chip only 3Chip only 3--side buttableside buttable
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Future trends – Medipix3…

New pixel electronics taking care of charge New pixel electronics taking care of charge 
diffusion diffusion –– eventevent--byby--event clustering event clustering 
Higher acquisition and frame rate with dead Higher acquisition and frame rate with dead 
time free readout time free readout –– probably using 3probably using 3--D pixel D pixel 
sensorssensors

Contiguous tiling of large areas Contiguous tiling of large areas –– making making 
using of deep via technologyusing of deep via technology
More efficient XMore efficient X--ray detection with uniform ray detection with uniform 
highhigh--Z sensor materialZ sensor material
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2-D Tiling concept

Sensor

Interposer

Readout

DSP

[J. John, Proceedings of IWorid meeting, Sept. 2003 Riga 
(next 2 slides)]

IMEC
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Through wafer hole plating

IMEC

W plugs in Si wafer
NB Post processed wafer Tmax 400 C
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Novel cooling techniques

3 examples of micro cooling 3 examples of micro cooling 
channels channels 
Must look for solutions which Must look for solutions which 
can be used post processing  can be used post processing  
(<400 C)(<400 C)
Interconnection of channels Interconnection of channels 
between chips remains a between chips remains a 
challengechallenge

[J. Meint et al, Journal of 
Microelectromechanical Systems, Vol. 9 
(1), March 2000 ]
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The way ahead…

Following the evolution of CMOS is Following the evolution of CMOS is 
unavoidable unavoidable 
Cost of prototyping becomes a major issue Cost of prototyping becomes a major issue 
–– calls for the formation of a large calls for the formation of a large 
consortiumconsortium
4 side buttable tiling needs to be developed4 side buttable tiling needs to be developed
There are promising developments in There are promising developments in 
cooling which may be adopted although a cooling which may be adopted although a 
major effort is still required major effort is still required 

Future developments in CMOS promise Future developments in CMOS promise 
much for radiation imaging detectorsmuch for radiation imaging detectors
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But for now….
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