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X Hybrid Pixel Detector

sensor chip (e.g. silicon)
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Hybrid Pixel Detector - Cross Section
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V_ A (by now rather old) pixel detector array
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Work carried out by RD19 for WA97.
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36 000 pixels
6 ladders of 6 chips

Each chip has 1000
pixels

2 arrays make up one
logical plane

[E. Heijne, E. Chesi]



@\ Hybrid pixel detector arrangement in a fixed
7 target heavy ion experiment (CERN WA97)
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CERN Experiment WA97 (1995)
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5x 5cm?area

7 detector planes

~ 0.5 M pixels

Pixel dimensions 75 x 500 um?
Trigger precision 1 usec

1 kHz trigger rate

NO hits unassociated with
particle tracks => WHY??
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Minimum lonizing Particle in Si Pixel
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Minimum lonizing Charge Deposition in Si
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Typical Front-end for HEP Pixel
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X Signal, Threshold, Noise
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Because of charge sharmg between pixels the threshold is

normally set around 1/3rd Landau peak while maintaining

optimum detection efficiency and spatial resolution
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Noise hit rate for a discriminator with
= bandwidth, f,

—Qun®
fn —fb
7 exp( 20 )

Q,, = threshold
o, = hoise

(It can be shown that oy, - the threshold variation - adds
to o, quadratically on the denominator.)

5% July 2005 Michael Campbell



'y Noise hit rate for a discriminator with
Z-\ bandwidth, f,
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In a large bandwidth systentw (Srl]JCh as an HEP experiment)

noise and threshold must be well separated to produce clean
event information.

The same separation provides practically noise-free images in
radiation imaging applications
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Pixels for High Energy Physics

¢ In a high multiplicity environment pixel
detectors are crucial to pattern recognition.
Technical choices are bound by this.

¢ In low multiplicity environments signal to
noise constraints can be relaxed leading to
simpler lower power solutions.
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Pixels for Imaging Radiation Detectors

¢ Front-end noise is rejected due to high
threshold to noise ratio

¢ Detector leakage current can be
compensated for pixel-by pixel

¢ Image quality becomes dose rate
iIndependent (limited only by background at
low rates and by pile up at high rates)

¢ In future CMOS scaling may be useful to
make bad detectors more uniform...
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Moore’s law and developments Iin
7\ CMOS

¢ CMOS s the workhorse for the entire
microelectronics industry

¢ Other technologies (e.g. bipolar, SiGe,
GaAs) are used in niche applications but
none can compete with CMOS in terms of
yield, component density and chip size.

¢ Experience from the LHC developments
Indicates that CMOS is the only viable
solution for large scale systems
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X Transistor feature size
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_ Components per processor chip
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X Metal layers
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X Power supplies
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Design Considerations for pixel chip

design
Noise should be minimized
series noise2 parallel noise
C
ENC,? oc — ENC.* I 7,
OinTs

high g, (! power) fast shaping

Preamp and discriminator should be fast

.G G+C)

. r gm Cf
high g, (! power!)

. . 2
Transistor matching ) A
o (Vy)

| WL |
I good matching requires large area transistors
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N Design Implications of further scaling- general -
7\ positive aspects

I/f noise decreases

Matching improved for constant dimensions:

2y Yoo AV
o (Vi) WL

A, = 1mV per nm of gate thickness micron*

Many more digital transistors per unit area

* H.Tuinhout, “Matching of NMOS Transistors,” Short Course on Deep Submicron
Modeling and Simulation, 12-15 Oct. 1998, EPFL, Lausanne, Switzerland
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y Design Implications of further scaling- general - Vt
7\ reduction

o

Vgs

Vt goes down, but weak inversion slope is constant.
Dynamic range limited
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y Design Implications of further scaling- general -
7\ square law region disappears

>

lds Ids 4

linear

linear
(vel. sat.)

(vel. sat.)

- -
Vgses Vgssv Vgs VgsesVgssv Vgs
Vgses - Vt = 2nkT/q Vgssv - Vt =4nLv,,/u
Input devices will operate in Weak Inversion

dpy = ly/nU;
W.Sansen, “Low Voltage, low power analog CMOS design,” Short Course on low

voltage, low power analog CMOS IC design, June 21-25 1999, EPFL, Lausanne,
Switzerland.
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) Power Supply Voltage and Transistor
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Stacking of transistors in one branch becomes difficult

Y.Taur, D.A.Buchanan, W.Chen et al., “CMOS Scaling into the
Nanometer Regime, Proceedings IEEE, Vol 85 no4, 1997, pp.486-504
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Profile of a CMOS Tansistor
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y_ Jm/lps VS 1og (Ips)
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CMOQOS design at present

¢ Moving from 0.25 um to 0.13 um enables
many more transistors to be implemented
on a single pixel

¢ Multiple thresholds and counters are
feasible even on a relatively small pixel

¢ Analogue front-end design is complicated
by inherent limitations of the fastest
devices and power supply limitations
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Present day leading edge processes -1

Intel

1 Technology Feature Size
E:;_ 130nm
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[S. Thomson et al., IEDM, San Francisco, 8-11 Dec. 2002 (next 2 slides)]
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Present day leading edge processes -2

Intel
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Present day CMOS - 3

A 90nm CMOS Device Technology ....

TSMC
TSMC Process LP L&} HS I'Os
Low-Vt| 5td-Vt |High Vi| Low-Vt | Std-Vt | High Vit | Std-Vt |{High-Vt
Vg (V) 12 1(12) 1 18 25 33
& (nm) [EOT] 22 16 =14 28 ~-53 ~70
L, {11111] 80 63 45/50 | 30/35 145 263 365
L. ( 1A um) 340/250(420/180|370/130) 755/335 | 640/280 | 520/215 |830/380|670/3100660/300(380/290 (580,290
(993/460 wTi ; ?‘ 20/320)
Iﬁf{nﬁx:um] 04 0.013 0.004 1{1.3) N 73 10 =300 =300 =300
T, (A/um’) 100p/30p 2 4n/1n (60/2 4n) / 03-1u 5p | <If | ==If
C, (fF/um?) 13/12 570,
Inverter delay (ps) | 15 21 26 19584 [113095)[145(11.6)] 79 | 105 | <23 | =32 | <42

l4s (0ff) =50 nA/um of gate length

|, (leak) = 2.4nA/um? of gate area (5A/cm?!)

[C.C. Wu et al., IEDM, San Francisco, 8-11 Dec. 2002]
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N Technology drivers....

Household friends...
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Head touch sensor —

Tail Camera (CMOS image sensor)
iequipped with LEDs)  Stereo microphone
Sy
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T. Kamimoto and T.T.Doi, IEDM, San Francisco, 8-11 Dec. 2002
(next 4 slides)]
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The Sony Vision - 1

<Digital
Consumer.

<TV, VCR=>

1970 1980 1990 2000 2010 2020 2030
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@l  Andthey don’t stop at animals...

CCD Color IE. Distance
Camera x 2 Sensor x 3
Microphones x 7 Speaker x 1
Thermo
Angular Rate Sensor x 6
Sensor x 1
] Touch
Acceleration Sensor x 6
Sensor x 3 Head.
Hands,
Shoulder

Power Sensor
x 8
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O The Sony Vision - 2

Processing Power (MIPS)
101°

Prediction by H. Moravec Human
10° l.
Monkey ‘.*’ /
o** | Target of
+*

10° Mouse - Rob:Cup |
" e =
g o TR
Lizard | ,» ©PNe \M}
*
10° e st
10° '

1990 2000 2010 2020 2030 2040 2050

A team of Sony robots should beat the football World Cup
champions in 2050....
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CMOS scaling - challenges

Front ends:

New front-end circuit topologies are being developed

Designers must find a way through a zoo of possible devices and
technology options

Digital circuits:
These become more complicated with every generation.
Existing tools don’t cover well high density mixed-mode design

Technology:
Prototyping costs are enormous
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X Medipix2 Cell Schematic

Charge sensitive preamplifier with individual leakage current compensation
2 discriminators with globally adjustable thresholds

3-bit local fine tuning of the threshold per discriminator

1 test and1l mask bit

External shutter activates the counter Previous Pixel

13-bit pseudo-random counter Shutter l
1 Overflow bit

y

3 bits threshold Maskbit Mux
Polarity  cjockout

Vth Low —»] :
Disc —
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Double >
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reamp Disc logic .
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. Shift 44
Ctest ——  Vth High s Register
\ — Testbit Co.nf
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Test Input v
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N g — —

Analog Digital
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Medipix2 Pixel (AnalogQ)
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8 Config Latches

Threshold Adjust

* 7 equal transistors:
= Bit2: 4 Trts
m Bitl: 2 Trts
= Bit0: 1Trt

Disc

* Idisc = 3xIDISC

* Analog output

Amplifier

* Ikrum Mirroring

* CL=1.3pF

* Cfb = 8fF

* CTest = 8fF

* lamp = 1uA

* Ikrum = 15nA



XN Medipix2 Chip Architecture
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Threshold scan with a pencil beam in
7\ pixel centre

2500 T E3go gl g, p=2318 -
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) Threshold scan with a pencil beam at

7\ various distances from pixel centre
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Spectrum of X-ray source using energy
1 window

Raw sum of counts in all 64 000 pixels versus global threshold
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2000} Spectroscopic

information — insight
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Siefert FK-61-04x12 X-ray tube, W-target, 2.5 mm Al, V., = 50 kV.
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Cross section of a solder bump bond

2 31.03 um

~f

Ti/W 38 nm, &24.7 um i i l i l

Cu 765nm, J 24.7 um i :::
|

Ni  2um, < 24.7 um
SnPb 22 um, & 33.0 um

5— Kapton 1 pm

Conductive glue
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Images of a Swatch using the Energy

Window
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A Medipix2 Experience

¢ Single photon counting is a reality — see
demo

¢ Noise free imaging possible over a large
range of dose rates

¢ Spectroscopic behaviour limited by charge
sharing between pixels

¢ Chip only 3-side buttable
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Future trends — Medipix3...

¢ New pixel electronics taking care of charge
diffusion — event-by-event clustering

¢ Higher acquisition and frame rate with dead
time free readout — probably using 3-D pixel
sensors

¢ Contiguous tiling of large areas — making
using of deep via technology

¢ More efficient X-ray detection with uniform
high-Z sensor material
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X 2-D Tiling concept

Sensor
Interposer
Readout

DSP

IMEC

[J. John, Proceedings of IWorid meeting, Sept. 2003 Riga
(next 2 slides)]
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Through wafer hole plating

IMEC

W plugs in Si wafer
NB Post processed wafer T ., 400 C
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Novel cooling techniques

¢ 3 examples of micro cooling
channels

¢ Must look for solutions which
can be used post processing
(<400 C)

¢ Interconnection of channels
between chips remains a
challenge

[J. Meint et al, Journal of
Microelectromechanical Systems, Vol. 9
(1), March 2000 ]
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The way ahead...

¢ Following the evolution of CMOS is
unavoidable

¢ Cost of prototyping becomes a major issue
— calls for the formation of a large
consortium

¢ 4 side buttable tiling needs to be developed

¢ There are promising developments in
cooling which may be adopted although a
major effort is still required

¢ Future developments in CMOS promise
much for radiation imaging detectors
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A But for now....
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