

Moore's law and challenges for future pixel detector designs

Michael Campbell PH Department CERN 1211 Geneva 23 Switzerland contact: Michael.Campbell@cern.ch

- Hybrid pixel detectors basic concepts
- Moore's law and developments in CMOS
- Impact on pixel chip design
- Future trends in CMOS
- A present day pixel imaging system
- Other emerging technologies
- Conclusions

A demonstration a portable radiation imaging detector

Hybrid Pixel Detector

Hybrid Pixel Detector - Cross Section

36 000 pixels 6 ladders of 6 chips Each chip has 1000 pixels 2 arrays make up one logical plane [E. Heijne, E. Chesi]

Work carried out by RD19 for WA97.

CERN Experiment WA97 (1995)

5 x 5 cm² area 7 detector planes ~ 0.5 M pixels Pixel dimensions 75 x 500 μm² Trigger precision 1 μsec 1 kHz trigger rate

NO hits unassociated with particle tracks => WHY??

Typical Front-end for HEP Pixel

Noise hit rate for a discriminator with bandwidth, f_b

$$f_n = \frac{1}{\sqrt{3}} f_b \exp(\frac{-Q_{th}^2}{2\sigma_n^2})$$

 $Q_{th} = threshold$ $\sigma_n = noise$

(It can be shown that σ_{th} - the threshold variation - adds to σ_n quadratically on the denominator.)

In a large bandwidth system (such as an HEP experiment) noise and threshold must be well separated to produce clean event information.

The same separation provides practically noise-free images in radiation imaging applications

5th July 2005

- In a high multiplicity environment pixel detectors are crucial to pattern recognition. Technical choices are bound by this.
- In low multiplicity environments signal to noise constraints can be relaxed leading to simpler lower power solutions.

- Front-end noise is rejected due to high threshold to noise ratio
- Detector leakage current can be compensated for pixel-by pixel
- Image quality becomes dose rate independent (limited only by background at low rates and by pile up at high rates)
- In future CMOS scaling may be useful to make bad detectors more uniform...

- CMOS is the workhorse for the entire microelectronics industry
- Other technologies (e.g. bipolar, SiGe, GaAs) are used in niche applications but none can compete with CMOS in terms of yield, component density and chip size.
- Experience from the LHC developments indicates that CMOS is the only viable solution for large scale systems

Transistor feature size

SIA Roadmap 1999

Components per processor chip

SIA Roadmap 1999 Michael Campbell

SIA Roadmap 1999

Power supplies

SIA Roadmap 1999

Power per processor chip

Design Considerations for pixel chip design

Noise should be minimized

series noise

parallel noise

$$ENC_o^2 \propto I_o \tau_s$$

 $ENC_d^2 \propto \frac{C_t^2}{g_m \tau_s}$ $ENC_o^2 \propto I_o$ high g_m (! power) fast shaping

Preamp and discriminator should be fast $t_r \propto \frac{C_t}{g_m} \frac{(C_L + C_f)}{C_f}$ high g_m (! power!) Transistor matching $\sigma^2(V_{th}) \propto \frac{A^2}{WL}$! good matching requires large area transistors

Design Implications of further scaling- general positive aspects

I/f noise decreases

Matching improved for constant dimensions:

$$\sigma^2(V_{th}) \propto rac{A_v^2}{WL}$$

A_v = 1mV per nm of gate thickness micron*

Many more digital transistors per unit area

* H.Tuinhout, "Matching of NMOS Transistors," Short Course on Deep Submicron Modeling and Simulation, 12-15 Oct. 1998, EPFL, Lausanne, Switzerland

5th July 2005

W.Sansen, "Low Voltage, low power analog CMOS design," Short Course on low voltage, low power analog CMOS IC design, June 21-25 1999, EPFL, Lausanne, Switzerland.

Power Supply Voltage and Transistor Threshold

Stacking of transistors in one branch becomes difficult

Y.Taur, D.A.Buchanan, W.Chen et al., "CMOS Scaling into the Nanometer Regime, Proceedings IEEE, Vol 85 no4, 1997, pp.486-504

Profile of a CMOS Tansistor

Log (I_{DS}) vs V_{GS}

Log (I_{DS}) vs V_{GS}

g_m/I_{DS} vs log (I_{DS})

Michael Campbell

0.13 μm LP transistor

CMOS design at present

- Moving from 0.25 μm to 0.13 μm enables many more transistors to be implemented on a single pixel
- Multiple thresholds and counters are feasible even on a relatively small pixel
- Analogue front-end design is complicated by inherent limitations of the fastest devices and power supply limitations

Intel

[S. Thomson et al., IEDM, San Francisco, 8-11 Dec. 2002 (next 2 slides)]

Present day leading edge processes -2

Intel

Michael Campbell

5th July 2005

Present day CMOS - 3

A 90nm CMOS Device Technology TSMC

TSMC Process	LP			G			HS		I/Os		
	Low-Vt	Std-Vt	High Vt	Low-Vt	Std-Vt	High Vt	Std-Vt	High-Vt			
V _{dd} (V)	1.2			1 (1.2)			1		1.8	2.5	3.3
T _{ox} (nm) [EOT]	22			16			<14		28	~53	~70
L _g (um)	80			65			45/50	50/55	145	265	365
I _{ds} (uA/um)	540/250	420/180	370/130	755/335 (995/460)	640/280 (865/400)	520/215 (750/320)	830/380	670/310	660/300	580/290	580/290
I _{off} (nA/um)	0.4	0.015	0.004	50 (75)	5 (7.5)	1 (1.5)	75	10	<300	<300	<300
$J_g (A/um^2)$	100p/30p			2.4n/1n (6n/2.4n)			0.3-1u		<5p	<1f	<<1f
C _j (fF/um ²)	1.3/1.2			0.85/0.95							
Inverter delay (ps)	15	21	26	9.5 (8.4)	11.3 (9.5)	14.5(11.6)	7.9	10.5	<23	<32	<42

 I_{ds} (off) = 50 nA/µm of gate length I_{g} (leak) = 2.4nA/µm² of gate area (5A/cm² !)

[C.C. Wu et al., IEDM, San Francisco, 8-11 Dec. 2002]

Technology drivers....

Household friends...

5th July 2005

T. Kamimoto and T.T.Doi, IEDM, San Francisco, 8-11 Dec. 2002 (next 4 slides)]

5th July 2005

And they don't stop at animals...

The Sony Vision - 2

Processing Power (MIPS)

A team of Sony robots should beat the football World Cup champions in 2050....

5th July 2005

CMOS scaling - challenges

Front ends: New front-end circuit topologies are being developed Designers must find a way through a zoo of possible devices and technology options

Digital circuits: These become more complicated with every generation. Existing tools don't cover well high density mixed-mode design

Technology: Prototyping costs are enormous

Medipix2 Cell Schematic

Previous Pixel

Shutter

Charge sensitive preamplifier with individual leakage current compensation 2 discriminators with globally adjustable thresholds

3-bit local fine tuning of the threshold per discriminator

1 test and1 mask bit

External shutter activates the counter

13-bit pseudo-random counter

1 Overflow bit

Medipix2 Pixel (Analog)

Bit2: 4 Trts Bit1: 2 Trts Bit0: 1 Trt

5th July 2005

Medipix2 Chip Architecture

Threshold scan with a pencil beam in pixel centre

Threshold scan with a pencil beam at various distances from pixel centre

Raw sum of counts in all 64 000 pixels versus global threshold

Siefert FK-61-04x12 X-ray tube, W-target, 2.5 mm AI, $V_{peak} = 50 \text{ kV}$.

Images of a Swatch using the Energy **Window**

7.3e+2

191

1e+2

Medipix2 Experience

- Single photon counting is a reality see demo
- Noise free imaging possible over a large range of dose rates
- Spectroscopic behaviour limited by charge sharing between pixels
- Chip only 3-side buttable

Future trends – Medipix3...

- New pixel electronics taking care of charge diffusion – event-by-event clustering
- Higher acquisition and frame rate with dead time free readout – probably using 3-D pixel sensors
- Contiguous tiling of large areas making using of deep via technology
- More efficient X-ray detection with uniform high-Z sensor material

2-D Tiling concept

[J. John, Proceedings of IWorid meeting, Sept. 2003 Riga (next 2 slides)]

5th July 2005

Through wafer hole plating

IMEC

W plugs in Si wafer NB Post processed wafer T_{max} 400 C

Novel cooling techniques

- 3 examples of micro cooling channels
- Must look for solutions which can be used post processing (<400 C)
- Interconnection of channels between chips remains a challenge

[J. Meint et al, Journal of Microelectromechanical Systems, Vol. 9 (1), March 2000]

- Following the evolution of CMOS is unavoidable
- Cost of prototyping becomes a major issue

 calls for the formation of a large
 consortium
- 4 side buttable tiling needs to be developed
- There are promising developments in cooling which may be adopted although a major effort is still required

Future developments in CMOS promise much for radiation imaging detectors

Acknowledgements

Fellow members of the Medipix Consortium

www.cern.ch/medipix

 Members of the CERN Medipix team Rafael Ballabriga Erik Heijne Xavier Llopart Lukas Tlustos