

X-ray detectors made of selfstanding epitaxial GaAs

G.C. Sun, N. Mañez, J.C. Bourgoin

IMPMC and LISIT, Université Pierre et Marie Curie (Paris 6) GESEC R&D

Requirements for X-ray imaging 1) Large – low Z

Large $Z \rightarrow$ high absorption

Large $Z \rightarrow$ strong fluorescence

Application to mammography

2) Defects: low concentration and homogeneity

Growth of Bulk materials

Low defect concentration: epitaxy Homogeneity: epitaxy

CdTe (area 1 cm²)

Bulk GaAs (1/4 of a 2 inches wafer)

Epitaxial GaAs (1/4 of a 4 inches layer)

	Gap(eV)	Cost	Surface	Homogeneity	Technology
CdTe, CZT	1.56	High	Small	Very bad	Not mastered
Bulk GaAs	1.42	Low	Large	Very bad	Standard
Epi GaAs	1.42	Low	Large	Very good	Standard
Ge	0.66	Low	Large	Very good	Not easy
Si	1.12	Low	large	Very good	Standard

Large concentration of defects : Afterglow

CdTe

GaAs

Anode voltage 60kV, I=160mA, bias 200 V, thickness 3 mm, Photocurrent: 20 nA/mm²

Anode voltage 40kV, I=50mA, distance 15 cm, bias 40 V, thickness 200 µm,

Photocurrent: 90 nA/mm²

Growth of epitaxial GaAs

A 4 inch, 550 µm thick layer

Thickness profile

Active layer

ASIC

Performance: dark current

Performance: photocurrent

40 kV, 14 cm, 1 mm², integration of 1 s, dose 708 μ Gy

40 kV, 14 cm, 1 mm², integration of 1 S

Thickness : 200 µm

Conclusions

Requirements for X-ray imaging:

1) Optimisation of absorption and contrast/resolution: GaAs

2) Low defect concentration and homogeneity: epitaxial GaAs

3) Self-standing epitaxial GaAs available now (GESEC R&D)