

Development of a detection system for synchrotron radiation breast tomography

A. Bergamaschi, C. Venanzi, D. Dreossi, R. Longo, E. Castelli

MAmmographic and Tomographic Imaging with Silicon detectors and Synchrotron radiation at Elettra

- Computed tomography for diagnosis of breast cancer
- Monochromatic synchrotron radiation beam at Elettra in Trieste
- High efficiency solid state detector with photon counting read out

Mammography and Breast Tomography

Planar mammography

 Strong superimposition of the breast structures

Computed tomography

- Enhanced contrast
- Depth resolution
- Shape detection
- Optimal for thick and dense breasts
- ✓ No increase of dose

Synchrotron radiation breast tomography

The SYRMEP beam line at Elettra has been modified for clinical examinations. The first patients are expected later this year.

Monochromatic beam

Laminar beam

- No beam hardening artefacts
- Reconstruction of the attenuation coefficients of tissues

- Scattering reduction
- Negligible divergence
 - Simple reconstruction algorithm

The MATISSE detector

20 cm wide

→field of view coverage

2 layers

→slice thickness ~ 700 µm

100 µm pitch

80% efficiency

The silicon microstrip sensors

The Frontend electronics

- Gain 100 mV/fC
- 500 e⁻ ENC
- 75 ns peaking time
- 64 channels
- Parallel digital outputs

VA64_tap

LS64

- Selectable gain stage
- 4 bit fine threshold
- Global trigger
- Channel disable

- Full custom data acquisition
- Several test modalities implemented
- Read Out without dead time

Data Acquisition

Pc Linux

Amplifier and comparator initialization

SERIAL

Detector alignment

Samp

e movement

80.000 000 MHz

VME

16 bit I/O register

Detector board

SHIFT REGISTER

Sensor ASICs FPGA EPROM 6.4 mm

First Results

- Pulses injected through the calibration capacitor
- Optimal linearity up to 3.5 MHz pulse frequency

-Resolution 100 x 300 μm^2

- 3.84 cm sensitive width
- Read Out without dead time
- 50 µm minimum line to line distance
- 672 pins BGA FPGA
- 8 Layers
- Definitive module to develop the final 20 cm detector

MATSIX tests

First images acquired
 Fine tuning is needed to solve problems of disuniformities between channels

Contrast/Detail phantom 20 keV

Simulated tissues embedded in an Ackermann phantom 20 keV

Conclusions

- Breast tomography is a promising imaging technique for diagnosis of breast cancer
- Prototypes of the MATISSE detector have been designed and assembled
- Images of mammographic phantoms have been acquired at Elettra
- Fine tuning is still required to optimize the performances
 - Probe cards
 - New test board to optimize the ASICs polarization

