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X-Ray Image
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X-Ray Imaging Elements
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Detector Transfer Function
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Tools

A. Simulation calculations:

ROSI  (Erlangen)

B.  Measurements:

Medipix 1 and 2



Imaging modalities

A.  monoenergetic projective image

B.  spectral projective image

C.  tomographic image (3D)



A.  Monoenergetic Projective Image

Intensity at detector position (x,y) :
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Aim:  Visibility of Structures

),(),( 222111 yxIyxI ≠Structure:  

Detector requirements:   

direct:
position resolution p (first interaction)
intensity resolution c = max

indirect:
pixel size: 0
detection efficiency ε=1
high dynamic range 0, inf
low noise noise = 0



Position resolution

ideal:          measure point of first interaction with infinite resolution

real:      1)  physics of X-Ray interaction with sensor material

first interaction:
photoabsorption. Compton scattering, Rayleigh scattering

γ γ γe-e- e-

secondary interactions: 
electrons: dE/dx, photons: photoabs., Compton, Rayleigh

2)   propagation of charges (scin.photons)

3)   finite size of sensor (read out) pixels



1) physics of X-Ray interaction with sensor material

Propagation of electrons: 

CdTe

Electron 90%energy  range:   < 20 µm  for E  < 100 keV in CdTe

plots taken from the phd thesis of M.Mitschke, Erlangen 2005



1) physics of X-Ray interaction with sensor material

Propagation of electrons: 

Si GaAs

Electron 90% energy range:   < 50 µm  for E  < 100 keV in Si

plots taken from the phd thesis of M.Mitschke, Erlangen 2005



1) physics of X-Ray interaction with sensor material

Propagation of secondary photons: 

GaAs
10 keV

GaAs
12 keV

plots taken from the work of J.Durst, Erlangen 2004



1) physics of X-Ray interaction with sensor material

Propagation of secondary photons: 
GaAs
10 keV

fraction of contained energy
inside projected radius

GaAs
12 keV

plots taken from the work of J.Durst, Erlangen 2004



1) physics of X-Ray interaction with sensor material

Propagation of secondary photons: 

CZT
26 keV

CZT
27 keV

plots taken from the work of J.Durst, Erlangen 2004



1) physics of X-Ray interaction with sensor material

Propagation of secondary photons: 

fraction of contained energy
inside projected radius

CZT
26 keV

CZT
27 keV

plots taken from the work of J.Durst, Erlangen 2004



1) physics of X-Ray interaction with sensor material
Propagation of secondary photons: 

GaAs; 80 keV
fluorescence off

GaAs; 80 keV
fluorescence on

plots taken from the work of J.Durst, Erlangen 2004



1) physics of X-Ray interaction with sensor material

Propagation of secondary photons: 

fraction of contained energy
inside projected radius

GaAs; 80 keV
fluorenscence off

GaAs; 80 keV
fluorenscence on

Radius of 90 % of deposited Energy:   r  < 20 µm  for E  < 80 keV in GaAs

plots taken from the work of J.Durst, Erlangen 2004



1) physics of X-Ray interaction with sensor material
Propagation of secondary photons: 

CdZnTe;  80keV
fluorescence off

CdZnTe;  80keV
fluorsecence on

plots taken from the work of J.Durst, Erlangen 2004



1) physics of X-Ray interaction with sensor material

Propagation of secondary photons: 

fraction of contained energy
inside projected radius

CZT; 80 keV
fluorenscence off

CZT; 80 keV
fluorenscence on

Radius of 90 % of deposited Energy:   r  < 70 µm  for E  < 80 keV in CdZnTe

plots taken from the work of J.Durst, Erlangen 2004



2)   propagation of charges: losses and charge sharing

Propagation of electrons and holes in semiconductor sensors: 

Important parameters:
sensor bias voltage -->  electrical field strength
lifetime of electrons and holes
mobility of electrons and holes
homogeneity of material

see talk by Michaela Mitschke

result: 90 % charge radius r  < 10 µm  for E  < 100 keV in 300 µm CdZnTe



Spatial energy deposition and charge sharing lead to:

For counting detectors:
--> enlarged effective pixel size for low threshold

reduced effective pixel size for high threshold
-->see talk by Michaela Mitschke

--> reduced counting efficiency for high threshold
--> double counting for low threshold

for intergrating detectors:
enlarged effective pixel size
no false fluence



Summary: contributions to position resolution

real:      1)  physics of X-Ray interaction with sensor material

photoabsorption. Compton scattering, Rayleigh scattering

γ γ γe-e- e-

90 % energy radius:  r  < 10 – 100   µm

2)   propagation of charges: 

3)   finite size of read out pixels: examples:

90 % charge radius:  r  < 10 µm

Medipix 1:  170 µm
Medipix 2:    55 µm



Visibility of structures: Hüttner-Grid

photograph

X-Ray
Image
(spectral)

plots taken from the phd thesis of F.Pfeiffer, Erlangen 2004



Visibility of structures: Hüttner-Grid

plots taken from the phd thesis of F.Pfeiffer, Erlangen 2004



Visibility of structures: Hüttner-Grid

2.0 lp/mm 2.5 lp/mm1.4 lp/mm

plots taken from the phd thesis of F.Pfeiffer, Erlangen 2004



Visibility of structures: Hüttner-Grid

Sampling theorem:

structure size s spacial frequency f
needs pixel size l = s/2 needs sampling frequency: fsamp = 2f
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position resolution:  MTF  with Medipix 1  and 2:

),()(
),()(),(

yxinFT
yxoutFTvuMTF = ),()(),( yxPSFFTvuMTF =

MTF from edge methodMTF from Hüttner-Grid

plots taken from the work of F.Pfeiffer, M.Hoheisel, Erlangen 2004



position resolution:  MTF  and low frequency drop
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plots taken from the work of A.Korn, M.Hoheisel et al., Erlangen



position resolution:  MTF  and low frequency drop
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plots taken from the work of A.Korn, M.Hoheisel et al., Erlangen



Visibility of structures :  Contrast
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Visibility for given contrast:  need large N = Φ A
-->  long exposure
-->  large area of structure

plots taken from the phd thesis of F.Pfeiffer, Erlangen 2004



Contrast-detail-visibility

CDMAM phantom: gold disks of various size and thickness

plots taken from the phd thesis of F.Pfeiffer, Erlangen 2004



Contrast-detail-visibility

Medipix 2Medipix 1

Mammographic phantom: Al2O3 grains, size 1.1 to 1.5 mm

plots taken from the phd thesis of F.Pfeiffer, Erlangen 2004



Contrast-detail-visibility

Medipix 2Medipix 1

Mammographic phantom: Al2O3 grains, size .55 to .75 mm

plots taken from the phd thesis of F.Pfeiffer, Erlangen 2004



Summary:  Detector Transfer Function
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B.  Spectral Projective Image
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Spectral Projective Imaging
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Image information:
(energy resolving detector)
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Spectral projective X-Ray Image Information
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How to make use of the energy information:
1)  single image for each energy -->  too much noise per image !
2)  contrast energy weighted image
3)  material reconstruction



Spectral sensitivity



2. Contrast energy weighted image
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Examples of energy weighted images

60 kV, W anode ,2mm Al filter, 300 mu Si, 150 V



Images in energy intervals

water

PMMA

60 kV, W anode ,2mm Al filter, 300 mu Si, 150 V

plots taken from the diploma thesis of J.Karg, Erlangen 2004



Examples of energy weighted images

Atten coeff for 2 material
weighting function

water

PMMA

energy weighted imagephoton counting image

plots taken from the diploma thesis of J.Karg, Erlangen 200460 kV, W anode ,2mm Al filter, 300 mu Si, 150 V



Examples of energy weighted images

Problem with Medipix 2: bad energy resolution due to
broad energy deposition and charge sharing !!
-->  Medipix 3



3 .Material reconstruction
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Method:  determine for given material matrix M 
the amount of material    p  
which fits best to measured image   t



Simulated examples for material reconstruction

plots taken from the diploma thesis of M.Firsching, Erlangen 2005



Material reconstruction in medical immaging

Medical imaging:
Most of the contrast is due to density variations:
Atten. coeff. of different „materials“  
all have the same energy dependence

Normal contrast agents have high density.

New concept:
Contrast agent has different energy behaviour

Quantitative agent reconstruction



Simulated examples for material reconstruction

Iodine image Gadolinium imagePhoton counting

plots taken from the diploma thesis of M.Firsching, Erlangen 2005



Material reconstruction for broad energy bins:
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C.  Tomographic Images

CT-imaging: 
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C.  Tomographic Images
Simulated photon counting images:

35 keV, Mo anode 35 keV, Mo anode

high contrast:
calcium disks in
breast tissue

low contrast phantome: 
water and fat disks in breast tissue

plots taken from the work of D.Niederloehner, Erlangen 2005



C.  Tomographic Images

CT  image of a peanut
with Medipix 2

plots taken from the work of D.Niederloehner, Erlangen 2005



C.  Tomographic Images

CT  image of a mouse
with Medipix 2

plots taken from the work of D.Niederloehner, Erlangen 2005



C.  Tomographic Images

CT  image of a mouse
with Medipix 2

plots taken from the work of D.Niederloehner, Erlangen 2005



C.  Tomographic Images

CT  image of a mouse
with Medipix 2

plots taken from the work of D.Niederloehner, Erlangen 2005



C.  Tomographic Images

CT-imaging: 

plots taken from the work of D.Niederloehner,   Erlangen 2005



C.  Tomographic Images

CT-imaging: 

plots taken from the work of D.Niederloehner,   Erlangen 2005



C.  Tomographic Images

Energy sensitive CT-imaging: 
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Many thanks
to my students
for their work



The End



C.  Tomographic Images

CT-imaging: 
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plots taken from the diploma thesis of M.Firsching, Erlangen 2005



Images in energy intervals

60 kV, W anode ,2mm Al filter, 300 mu Si, 150 V

plots taken from the diploma thesis of J.Karg, Erlangen 2004



1) physics of X-Ray interaction with sensor material

Propagation of secondary photons: 

CZT
26 keV

CZT
32 keV

plots taken from the work of J.Durst, Erlangen 2004



Spectral attenuation coefficients



X-Ray Image
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position resolution:  MTF  with Medipix 1  and 2:

Medipix 1

plots taken from the work of F.Pfeiffer, M.Hoheisel, Erlangen 2004


