SPECIATION OF ANTIMONY IN" ANCIENT TILE GLAZES: A XAES STUDY
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Introduction

The study of ancient decorative building materials with cultural value is a
challenge to material scientists once it is usually necessary to apply only
non-destructive techniques. Glazed tiles — azulejos, from the original Arab
designation — have been used throughout the last five centuries in Portugal
as decorative panels in the interior of private and public buildings.

To recover such artistic tile panels for exposure in a museum, not seldom
the tile glaze has to be restored —a task requiring a concise knowledge of oxides. Simultaneously, the energy perturbation of 4d!? electrons due
materials and colorants used at the time and plgce_of tile progiuctlon, so that to chemical bonding in SbY is expected to induce intensity variations
only conformable new products are employed in tile restoration. (b) and/or energy shifts in XANES post-edge details.

Yellow colouring in glasses & glazes is usually due to antimony, added . : A XANES study of Sh K-edge is therefore the clue for interpreting
mostly as lead antimonate [1]. However, as the final form of Sb within the Fig. ; Z‘J{;i‘eﬂ‘:@;ﬂjﬁ: ;‘;’g‘ﬁﬁf:jez’g;“(”m‘;;as antimony speciation in a chemically complex material, particularly if
glaze is still questionable, a XAFS study was undertaken on yellow tile suitable model compounds are available — namely, well crystallized

for “amarelo”/ yellow); (b) above, tile fragment in B 8
glazes of Portuguese manufacture (XVII to XIX century). natural size; below, detail (50X) of assigned area. minerals with known crystal structure.

Fundamentals

The electron configuration of Sb — [Kr] 4d'0 5s2 5p3 — favours formal

valences (3+) & (s+). The energy of K-absorption edge (ideally 30491 eV)
will then display shifts depending on the valence state(s) present in the
absorbing material.

The lone pair of electrons 5s2 — strongly localized in Sb™! — favours an
asymmetric environment and unilateral positioning of ligands in Sb,0,

i Fig. 2 — Layers of [(Sb5*)° O,] octahedra in complex oxides: square (Q-type)

Materials 2-Lay O ‘ Q- ®)
) in the minerals cervantite_(tetragonal Sb,0, [2]) and triangular (T-type) in

Small fragments of glaze with rosiaite (trigonal PbSh,0, [3] ). The triangular octahedral layers are different (Sh3H)™
an underlying thin layer of in cubic pyrochlore-type oxides — the mineral stibiconite (ideally Sh,0,0H @
ceramic body (fig. 1) were never found well crystallized [4] ) and allied synthetic oxides [5] (e.g. SbsO;;). (Sb%)°
directly irradiated. Model /
compounds — synthetic / £ V)
powders and slightly grinded E(eV) 30475 30495 30515 30535 30555 30575

minerals — were pelletized
with BN. Selected minerals
were: yellow cervantite (fig. 2)
with Sb3* in pyramidal (Tu)
and Sh°* in octahedral (o)
coordination (with minor
Ordofiezite, Zn Sh, Og); Whitish
minerals valentinite (fig.3)
and senarmontite containing
only pyramidal Sb3*(fig. 4);
and a poorly defined yellow
mineral afine to pyrochlore,
stibiconite.
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Energy values adjusted to experimental data Fig. 6 — Sb K-edge XANES spectra

of valentinite: (a) experimental
(b) calculated for a cluster of 87

Fig. 5 — Contributions of the two Sh
species to the calculated K-edge

atoms. Assigned region clearly
shows the presence of another
phase in the mineral sample.

Trigonal oxides M Sb,O;: isolated [(M?)°O,] octahedra connecting
triangular layers of [Sh°O,] octahedra with a honeycomb pattern

XANES spectrum of cervantite
assuming a cluster of 87 atoms.

Fig. 3 — Valentinite, Sb,0,
(orthorhombic [6])

Cervantite, a-Sb,0,

Experimental

The composition of mineral samples and
synthetics used as model compounds was -
checked by X-ray diffraction, as well as the ! ==

phase constitution of glaze fragments.

The instrumental set-up of BM-29 beamline
at the ESRF was used to collect Sb K- edge
XANES spectra in transmission mode.

To model the spectra, ab initio calculations
were performed with the FEFF8.10 code [8]
using a full multiple scattering approach.
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Fig. 4 — Senarmontite [7] ( Sb,0;,

E (eV)
a-form, cubic S.G. Fd3m)

Fig. 8 — Sb K-edge XANES spectra
of stibiconite: (a) experimental - r .
and (b) calculated assuming a 30450 30475 30500 30525 30550 30575 30600
cluster of 87 atoms and an
atomic arrangement based on
pyrochlore structure for an

E (eV)
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Fig. 7 — Cervantite Sh K-edge XANES : (a) sample
containing minor Ordofiezite, experimental data;

(b) calculated contributions assuming a cluster of Fig. 12 — Experimental Sb K-edge XANES spectra of

yellow glazes, XIX (AM 11) & XVII (AM 4,12,13) centuries.

87 atoms and compound sum [Sh1+2Sb2]. approximate formula Sh,O,. o ]
Pao (|S Pa P ge energies vary
Puo |
k AM 13
o b Conclusions & Comments
RS (et el » m “ Sh5*& Sh®* have distinct coordination tendencies in crystalline solids (fig. 2). There-
generation of Sh, O molecules _N & & s =" at w0 w fore, Sb K-edge details (a & b) allow to distinguish between chemical species (fig. 5).
Fig. 9 — X-ray diffraction pattern (Cu Ka radiation) of = Spem_atlon of f_u_ser metals and (_:olor_ants in anCIent_tlle glazes and glasses enllghtens
glaze fragment AM 13: S, SnO, (cassiterite, opacifier) chemical affinities and correlations in phase behaviour that can account for ageing
P, pyrochlore-type phase (sirong ines are indexed). [t 1 rr 1t mechanisms. The mineral world may additionally provide useful suggestions.
260 - - - - -
The energy shift (4 eV) observed for the absorption edge in glaze fragments indicates
. Fig. 11 - Calculated (PowderCell Program [10]) X-ray diffraction pattern the presence of both Sb species (3+ & 5+). Combined with X-ray diffraction data, this
i (Cu Kot radiation) for an hypothetical pyrochlore phase (S.G. result clearly shows that the yellow colour obtained by adding lead antimonate as raw
Fd3m) with Sb5* partially filling the octahedra (equipoint 16c) ial is d h f SbS* h db di d h ith
and occupying distorted pseudo-cubic sites (16, fig. 0). material is due to the presence o osted by a dispersed nanophase wit

pyrochlore structure (figs. 9 to 11). Indeed, the species Sb3* gives no colour to natural
compounds and is recognized as a network-forming cation in oxide glasses [11].

(552 formin Yellow Sb-oxides with atomic arrangement There is a remarkable coincidence between calculated Sb K-edge XANES and data
| o q
trliangulﬁrl Ia)1ersg derived from pyrochlore collected from controlled model minerals (e.g, fig. 8). The observed differences are
elong i) planes (e.g., “giallo di Napoli® and the poorly defined mineral Stibiconite) mainly due to minor contaminant phases (as in valentinite sample, fig. 6).
Fig. 10 — Ideal pyrochlore polyhedral From referencerm
arrangement derived from a fluorite- on Bi,0, morlmc_lglc,
type anionic close packing Isostructural wit
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