Coherent X-ray Scattering from Ultrathin Probe Layers
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are frequently used to enhance
x-ray scattering from thin films.
This applies for :
@ incoherent scattering
e.g., fluorescence [1]

Coupling the incident radiation into a
waveguide mode leads to strong flux
enhancement in the guiding layer [3]
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Coherent and incoherent
x—ray scattering from such
A very strong intensity enhancement is observed, if the layers exhibits qualitatively
x-rays are coupled into guided modes of a different features.
waveguide structure

One observes a strong amplification
of the fluorescence yield from
the guiding layer.
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The incoherently scattered
intensity scales LINEARLY
with the normalized field
intensity in the guiding
layer.

10 The coherent scattering

o8 channels experience a

much stronger enhancement
than the incoherent channels.
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This becomes particularly ' :

T % 9 4 5 0 efffective if combined with angleof incidence  (mrad)
angle of incidence/mrad standing waves in x-ray

waveguide structures.
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Coherent scattering from
ultrathin layers in the The Reflected Amplitude
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Born — Approximation

The coherently reflected
intensity scales
R; =|ref|. Wr']'::ﬂ probe layer = incident + reflected amplitude Intensity : QUADRATICALLY with the
= layer thickness - y : . . f .
) T wavefield amplitude at jhel?la I Iyt 122 |12 normalized f|e|d_ |_nten5|ty I(z,)
1, = scattering amplitude =a(z) Notethat k; ~ ks at the layer position.

How to verify the coherent enhancement ? Resonant Reflection from Ultrathin Layers

Use nuclear resonant scattering from isotopic probe layers S GEEEiy SEaliEnst (sl (B i) B i

ARE of the x-ray fl he | ition [4
Measured signal: SQU of the x-ray flux at the layer position [4]
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scattering Ime}ging_ the Investi_gation_of
plane magnetic spin structure  metallic particles
of exchange-coupled embedded in
thin films [5]. soft-matter
thin films
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Depth — dependence of the signal 20 o Comparison with the incoherent
scattered from the probe layer : signal from the probe layer :
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