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Coherent and incoherent
x−ray scattering from such

different features.
layers exhibits qualitatively

Ultrathin probe layers can be used
to study depth−dependent properties
with sub−nm spatial resolution.
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waveguide structures.
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One observes a strong amplification

A very strong intensity enhancement is observed, if the
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Introduction

The coherently scattered intensity is proportional to the

3 nm Ag

11 nm Fe

28 nm FePt

Applications

Measured signal:
The time−integrated reflected intensity

Resonant Reflection from Ultrathin Layers

= wavefield amplitude at the layer

= incident + reflected amplitude

SQUARE of the x−ray flux at the layer position [4]

Comparison with the incoherent
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Reflectivity of the probe layer

Total reflectivity

x−ray scattering from thin films.
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signal from the probe layer :

are frequently used to enhance

This applies for :

The Reflected Amplitude

= transmission coefficient
= layer thickness
= refl. without probe layer

= scattering amplitude Note that

scattered from the probe layer :
Depth − dependence of the signal
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The X−ray Flux

Coupling the incident radiation into a 
waveguide mode leads to strong flux

enhancement in the guiding layer [3]

in Layered Structures

e.g., fluorescence [1]
incoherent scattering

coherent scattering
e.g. GISAXS, GID [2]

The coherent scattering

much stronger enhancement
channels experience a

than the incoherent channels.
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Pd

Fe57
0.7 nm

z

Intensity :

ϕ

Born − Approximation
Distorted − Wave 

Coherent scattering from
ultrathin layers in the 

The coherently reflected

QUADRATICALLY with the

at the layer position.

intensity scales 

normalized field intensity
= a(zp)

t = 1 + r

~ki ≈
~kf

R = R0 + i d t(~ki) t(~kf) fp

zp

R = R0 + i d a(zp)
2 fp

I(zp)I ≈ I0 + d2 I(zp)
2 |fp|

2

Standing waves in thin films

6

The incoherently scattered

with the normalized field

layer.

intensity scales LINEARLY

intensity in the guiding

~ki
~kf


