

CRYSTAL a solid structure consisting of atoms, molecules or ions having a geometrically regular arrangement, which is repeated indefinitely in the three spatial dimensions, called the crystal lattice

TRAITÉ DE MINÉRALOGIE,
PAR LE C ${ }^{\text {Ps }}$. HAÜY,
Membre de IInstitut National des Sciences et Arts, et Conservateur des Collections Minerrilogiques de lÉale des Mines PUBLIE PAR LE CONSEIL DES MINES TOME CINQUIEME

Caractères Mineralogiques. Distribution methootique des Minéraur. Figures Gilomitriques.

René Just Haüy (1743-1822)

THE CRYSTAL LATTICE

[^0]

THE UNIT CELL

A unit cell is represented by a parallelepiped, characterized by three non coplanar vectors ($\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}$) and three angles (α, β, γ)

Depending on the relation among vectors and angles, there are seven types of unit cells, forming the seven crystal systems

THE SEVEN CRYSTAL SYSTEMS

Edges and angles

$$
\begin{gathered}
\text { Cubic } \\
a=b=c \\
\alpha=\beta=\gamma=90^{\circ}
\end{gathered}
$$

> Hexagonal
> $a=b \neq c$
> $\alpha=\beta=90^{\circ}, \gamma=120^{\circ}$

Tetragonal
$a=b \neq c$ $a=b \neq c$
$\alpha=\beta=\gamma=90^{\circ}$ Orthorhombic
$\begin{gathered}a \neq b \neq c\end{gathered}$
$\alpha=\beta=\gamma=90^{\circ}$

Rhombohedral $a=b=c$

THE 14 BRAVAIS LATTICES

TRIGONAL AND ROMBOHEDRAL UNIT CELL

The translational periodicity of the crystals generates families of lattice planes

The Miller Indices

Given the three unit vectors of the crystal lattice, a, b, and c, and given x, y, and z, the intercepts of a plane on them, this plane is indicated by three integers, h, k, and I such that

William Hallowes Miller (1801-1880)

$$
h=\frac{1}{\frac{x}{a}} \quad k=\frac{1}{\frac{y}{b}} \quad l=\frac{1}{\frac{z}{c}}
$$

Given a plane (hkI) the translational symmetry of the crystal lattice generates a family of planes (indicated with curly brackets $\{\mathrm{hkl}\}$, all having the same Miller indices h, k, I of the generating plane, equally spaced by a distance d which depends on the Miller indices.

Given a plane (hkl) the translational symmetry of the crystal lattice generates a family of planes (indicated with curly brackets \{hkl\}, all having the same Miller indices h, k, I of the generating plane, equally spaced by a distance d which depends on the Miller indices.

Note that when the Miller indices increase, the d spacing decreases, and the planes have a lower density of lattice nodes

Interplanar spacing

The interplanar distances d can be calculated with simple geometric considerations; they are a function of the cell parameters and contain the values of h, k, and $/$ of the considered family of planes

System	$d_{h k l}$
Cubic	$\left[\frac{1}{a^{2}}\left(h^{2}+k^{2}+\prime^{2}\right)\right]^{-1 / 2}$
Tetragonal	$\left[\frac{h^{2}+k^{2}}{a^{2}}+\frac{l^{2}}{c^{2}}\right]^{-1 / 2}$
Orthorhombic	$\left[\frac{h^{2}}{a^{2}}+\frac{k^{2}}{b^{2}}+\frac{l^{2}}{c^{2}}\right]^{-1 / 2}$
Hexagonal	$\left[\frac{4}{3 a^{2}}\left(h^{2}+h k+k^{2}\right)+\frac{l^{2}}{c^{2}}\right]^{-1 / 2}$
	$\left[\frac{1}{a^{2}} \frac{\left(h^{2}+k^{2}+l^{2}\right) \sin ^{2} \alpha+2(h k+k l+l h)\left(\cos ^{2} \alpha-\cos \alpha\right)}{1-2 \cos ^{3} \alpha+3 \cos ^{2} \alpha}\right]$
Monoclinic	$\left[\frac{\left(h^{2} / a^{2}\right)+\left(l^{2} / c^{2}\right)-(2 h / \cos \beta / a c)}{\sin ^{2} \beta}+\frac{k^{2}}{b^{2}}\right]^{-1 / 2}$
Triclinic	$\begin{aligned} & {\left[\left(\frac{h^{2}}{a^{2}} \sin ^{2} \alpha+\frac{k^{2}}{b^{2}} \sin ^{2} \beta+\frac{l^{2}}{c^{2}} \sin ^{2} \gamma+\frac{2 h k}{a b}(\cos \alpha \cos \beta-\cos \gamma)\right.\right.} \\ & \left.\quad+\frac{2 k l}{b c}(\cos \beta \cos \gamma-\cos \alpha)+\frac{2 l h}{c a}(\cos \gamma \cos \alpha-\cos \beta)\right) / \end{aligned}$
	$\left.\left(1-\cos ^{2} \alpha-\cos ^{2} \beta-\cos ^{2} \gamma+2 \cos \alpha \cos \beta \cos \gamma\right)\right]^{-1 / 2}$

Interplanar spacing

or with another formalism:
$Q=\left(1 / d_{h k}\right)^{2}=h^{2} a^{* 2}+k^{2} b^{* 2}+I^{2} c^{* 2}+2 k l b^{*} c^{*} \cos \alpha^{*}+2 h l a^{*} c^{*} \cos \beta^{*}+2 h k a^{*} b^{*} \cos \gamma^{*}$
where:

$$
\begin{aligned}
& a^{\star}=\frac{b \times c}{V} ; \quad \cos \alpha^{\star}=\frac{\cos \beta \cdot \cos \gamma-\cos \alpha}{\sin \beta \cdot \sin \gamma} \\
& b^{\star}=\frac{c \times a}{V} ; \quad \cos \beta^{\star}=\frac{\cos \alpha \cdot \cos \gamma-\cos \beta}{\sin \alpha \cdot \sin \gamma} \\
& c^{\star}=\frac{a \times b}{V} ; \quad \cos \gamma^{\star}=\frac{\cos \alpha \cdot \cos \beta-\cos \gamma}{\sin \alpha \cdot \sin \beta}
\end{aligned}
$$

REDUCED FORMULAS

Cubic:
 $$
1 / \mathrm{d}^{2}=\left(\mathrm{h}^{2}+\mathrm{k}^{2}+\mathrm{l}^{2}\right) / a^{2}
$$

Tetragonal:

$$
1 / \mathrm{d}^{2}=\left\{\left(\mathrm{h}^{2}+\mathrm{k}^{2}\right) / a^{2}\right\}+\left(\mathrm{l}^{2} / c^{2}\right)
$$

Orthorhombic:

$$
1 / \mathrm{d}^{2}=\left(\mathrm{h}^{2} / a^{2}\right)+\left(\mathrm{k}^{2} / b^{2}\right)+\left(1^{2} / c^{2}\right)
$$

Hexagonal:
$1 / \mathrm{d}^{2}=(4 / 3)\left\{\left(\mathrm{h}^{2}+\mathrm{hk}+\mathrm{k}^{2}\right) / a^{2}\right\}+\left(1^{2} / c^{2}\right)$
Monoclinic:
$1 / \mathrm{d}^{2}=\left(1 / \sin ^{2} \beta\right)\left\{\left(\mathrm{h}^{2} / a^{2}\right)+\left(\mathrm{k}^{2} \sin ^{2} \beta / b^{2}\right)+\left(\mathrm{l}^{2} / c^{2}\right)-(2 \mathrm{hl} \cos \beta / a c)\right\}$

The crystallographic, or fractional, coordinates

a, b, and c vectors defining the unit cell, identify the unit vectors of a reference system, not necessarily orthogonal, which is used to indicate the position of a point in the cell

Site Occupancy Factor

Sometimes a crystallographic position within a unit cell is not fully occupied by an atom, i.e. that atom is not present in that position in all unit cells of the crystal. Its site occupancy factor (s.o.f.) will be less than 1.
This can happen for various reasons:

- static or dynamic disorder: some atoms are displaced in several positions. On average, each of these positions is occupied by a fraction of the atom Ex. Hydroxylapatite \rightarrow model structure \rightarrow CIF file

Site Occupancy Factor

- substitutional disorder: elements with similar binding properties can occupy equivalent sites. Isomorphic substitution - solutions
Ex. Pb-Hydroxylapatite, Zn -Cd-S-Se systems, Mg-Calcite, Clays

estimated standard deviation
${ }^{\text {loop__ _atom_site_type_symbol }}$
${ }_{\text {atom_site_type_sy }}^{\text {ato }}$ -atom site fract
-atom_site_fract_y
atom_site-fract_z
_atom_site_-thermal_displace_type atom_site_- U_iso_or_equiv
Ca Cal \quad atom_site_s symmetry_multiplicity $\begin{array}{lll} \\ \mathrm{Ca} 1 & 0.66667 & 0.33333 \\ \mathrm{~Pb} 1 & 0.66667 & 0.3333\end{array}$ 0.66667 $0.24083(15) \quad 0.99317(26)$ $0.4076(8) \quad 0.3878(6)$ $0.3736(16) \quad 0.5295(11)$ $0.5921(11) \quad 0.4622(15)$ $0.3576(7) \quad 0.2580(8)$ 0.0
S.O.F.(Ca1) + SO.F. $($ Pb1 $)=1$
S.O.F. $(\mathrm{Ca} 2)+$ SO.F. $(\mathrm{Pb} 2)=1$

The content of a crystal
symmetry operations
Asymmetric Unit
of the space group

Unit Cell Content
simple translation
\longrightarrow Crystal
along a, b, and c

Cimetidine - monoclinic $\quad a=10.394 \AA ; b=18.819 \AA ; c=6.825 \AA ; \beta=106.44^{\circ}$

Combining symmetry operations

In real crystals these symmetry operations can only be combined in 32 possible ways, defining 32 crystallographic point groups

Of the 32 crystal classes, only 11 contain the operator center of symmetry, and these 11 centro-symmetric crystal classes are known as Laue groups.

Symmetry Elements and Translation

 Screw Axis 2_{1}

Combination of Symmetry Elements with Translation

Finally, combining the 32 crystal classes
(crystallographic point groups) with the 14 Bravais lattices, we find up to 230 different ways to replicate a finite object (motif) in 3-dimensional space. These 230 ways to repeat patterns in space, which are compatible with the 32 crystal classes and with the 14 Bravais lattices, are called space groups, and represent the 230 different ways to fit the Bravais lattices to the symmetry of the objects.

Site Symmetry and Special Positions

The action of symmetry elements of a space group on each point of the unit cell will reproduce it n times. This n value is called "site multiplicity"

The points placed over one or more point symmetry elements will be unaffected by those operations. Therefore a special position has a reduced site multiplicity \rightarrow Escher web sketch

A space group can include different special positons, called Wyckoff positions

$$
\text { Unit cell content }=\sum_{i}(\text { s.o.f. })_{i} \times(\text { site mult. })_{i}
$$

The characters of the 230 space groups are resumed in the International Tables for Crystallography (IUCr)

One example

The CIF file (Crystallographic Information File) Hall, Allen \& Brown (1991)

CIF Format

Data items can also be stored as part of a loop. This is usually used to store a table of values, such as atom coordinates. The loop begins with ' loop_ ', which is then followed on subsequent lines by the data names in the table. After that, the value data is stored: each line will contain a data item for each of the data names listed. loop_

```
_atom_site_type_symbol
atom_site_label
    atom_site_fract_x
    atom_site_fract_y
    _atom_site_fract_z
    atom_site_occupancy
    atom_site_thermal_displace_type
    _atom_site_U_iso_or_equiv
    atom_site_symmetry_multiplicity
\begin{tabular}{llllllllr} 
Zr & Zr \(\overline{1}\) & 0.0 & \(\overline{0} .0\) & 0.0 & 1.0 & Uiso & \(0.01390(24)\) & 6 \\
P & P2 & \(0.66875(30)\) & 0.0 & 0.25 & 1.0 & Uiso & \(0.0355(6)\) & 18 \\
0 & 03 & \(0.5108(6)\) & \(-0.1098(5)\) & \(0.21303(14)\) & 1.0 & Uiso & \(0.0261(10)\) & 36 \\
0 & 04 & \(0.7183(6)\) & \(-0.1255(5)\) & \(0.28148(7)\) & 1.0 & Uiso & \(0.0718(15)\) & 36
\end{tabular}
```

A CIF file can be read by almost any crystallographic program enCIFer: https://www.ccdc.cam.ac.uk/Community/csd-community/encifer/ Mercury: https://www.ccdc.cam.ac.uk/support-and-resources/Downloads/ Vesta: https://jp-minerals.org/vesta/en/

X-RAY DIFFRACTION

X-ray scattering

WWWWW•
electron

Intensity of a diffraction peak

$$
I_{h k l}=\frac{1}{2} \frac{K_{e} K_{h k l}}{\mu}
$$

$I_{h k l}$ is directly proportional to the Structure Factor $F_{h k l}$ (contained in $K_{h k l}$) and inversely proportional to the linear absorption coefficient μ

- $K_{e}=$ experimental constant containing $I_{\nu}, e, m_{e}, c, \lambda$, and a scale factor S
- $K_{\text {(hkl) }}=$ constant specific of the given crystalline phase, contanining:
$m_{h k l}=$ multiplicity of the hkl reflection,
$V=$ Unit cell volume
$V_{s}=$ Irradiated volume of sample
$L p=$ Lorentz - polarization factor
$F_{h k k}=$ Structure Factor
- $\mu=$ linear absorption coefficient
$F_{h k l}=$ Structure factor $\quad F_{h k l}=\sum_{j=1}^{N} f_{j} e^{2 \pi i\left(h x_{j}+k y_{j}+l z_{j}\right)}$
in which
- $x_{j} y_{j} z_{j}=$ crystal coordinates of the N atoms in the asymmetric unit
- $f_{j}=$ atomic scattering factors

$2 \mathrm{~d} \operatorname{sen} \theta=\lambda$

$2 d \operatorname{sen} \theta=\lambda$

Powder X-ray Diffraction

Small crystals (...not so small!)

N. Dahal et al. Chem. Mater. 2008, 20, 6389

In a microcrystalline, a large number of crystallites are randomly oriented.
When a family of hkl planes are in diffraction condition at a given theta angle, all crystallites produce diffracted beams with rotational symmetry with respect to the incident beam. Each single diffracted reflection degenerates into a diffraction cone.
$3 \mathrm{D} \rightarrow 1 \mathrm{D}$

Powder X-ray Diffraction - diffraction cones and Debye rings

Reflection (Bragg-Brentano) geometry - flat sample

In reflection geometry the sample is packed onto a surface that lies in the focusing plane. In geometry the incident beam and the detector synchronously rotate in the same circle and the same theta angle with the sample surface. Only the diffraction effects of atomic planes parallel to the surface can be measured (at the proper angles). Thereforeit is important that on the surface of the there is a large number of randomly oriented crocrystals in order to equally represent all the atomic planes.

Reflection (Bragg-Brentano) geometry - flat sample

In reflection geometry the sample preparation is very simple but it is prone to introduce systematic errors, such as preferred orientations and sample displacement

Preferred Orientations

Ex. metals soaps

L. Robinet, M.-C. Corbeil, Studies in Conservation, 2003, 48, 23

Ex. cerium phosphate

Chengchun Tang et al. Angew. Chem. 117, 5

Transmission geometry - capillary sample

In transmission geometry the sample is generally packed into a capillary tube (0.5-0.3 mm) placed in the focusing spot. In this geometry the incident beam is fixed and the detector rotates in the 2 theta circle. The capillary rotates around its axis to improve data statistics. This geometry is not affected by a sample displacement error, and reduces preferred orientation effects. However it is more difficult to set up and can present statistics problems due to the small amount of sample inside the capillary.

Transmission

Setup of an X-ray diffraction data collection

In powder diffraction the 3D information is compressed in one dimension, and it is sometimes very difficult to extract information suitable for our needs from a diffractogram. A correct and accurate data collection is essential for any use.

Depending on several factors:

- the kind of sample
- what is the target of the experiment
- how much money and time is available
- what kind of instrument is available
we must define:
- the sample preparation
- the instrument, geometry, optics and sample environment
- the 2theta angular interval, 2theta scan step, and the acquisition time per each step

Powder X-ray Diffraction Pattern - information that can be extracted

QUALITATIVE

- Identification of the crystalline phases Useful data: 2theta position and number of peaks

QUANTITATIVE

- Weigth \% of each crystalline phase
- Amorphous phase content

Useful data: intensity and 2theta position and number of peaks

MICROSTRUCTURAL

- Size of crystallites
- Lattice deformations
- Dislocations, stacking defects

Useful data: peak profile (broadening)
COMPLETE STRUCTURE

- Lattice parameters (crystalline system)
- Symmetry properties (lattice type, space group)
- atomic coordinates, thermal factors, occupancy

Useful data: everything

Recommended a dedicated software

Powder X-ray Diffraction - Qualitative Analysis - Peak Positions

The 2theta position of diffraction peaks of a single phase depends on its unit cell parameters, while the total number of peaks also depends on space group.

The diffraction pattern is a fingerprint of a crystal phase \rightarrow
Qualitative analysis - Search and Match software (QUALX) linked with a database (PDF, COD)

ICDD PDF4 (\$\$\$) - 480.000 entries https://www.icdd.com/pdf-4/

COD Crystallography Open Database
Free - 495.000 entries
http://www.crystallography.net/cod/

Powder X-ray Diffraction - Qualitative Analysis (QUALX \rightarrow 47-48)

Refinement of Unit Cell Parameters (\rightarrow 21100)

Sometimes we know only approximately the unit cell parameters of a crystalline phase and their accurate values can give us precious informations on phase composition (\rightarrow Vegard's law) or for identification purposes.

The refinement of unit cell parameters can be done by least square methods. The accurate estimation of peak positions is needed first.
Single or cluster peak fit by a dedicated software: Fullprof, XFit, etc.
Then " Chekcell " or " Celref "

The Vegard's law

The Vegard's law is not a true "law", but only an empirical rule.
It states that in a two-component solid solution the unit cell parameters are generally linearly correlated with the composition. Useful i soe cases to find the composition from simple diffractometric measurements
Ex. $\mathrm{Cd}_{(1-x)} \mathrm{Zn}_{x} \mathrm{~S}, \mathrm{CdS}_{(1-x)} \mathrm{Se}_{\mathrm{x}}$, Pb-Hydroxylapatite, many metal oxides

$\mathrm{CdS}_{(1-\mathrm{x})} \mathrm{Se}_{\mathrm{x}}$

Quantitative Analysis

The intensity of each $h k /$ reflection, per each crystalline phase α is proportional to the volume fraction x_{α} of that phase in the mixture

$$
I_{(h k l) \alpha}=\frac{1}{2} \frac{K_{e} K_{(h k l) \alpha} x_{\alpha}}{\mu_{m}} \quad K_{e}=\frac{I_{0} \lambda^{3} l_{f e n d}}{32 \pi R_{g o n}} \frac{e^{2}}{m_{e} c^{2}}
$$

$K_{e}=$ experimental constant

- $K_{(h k l)}=$ constant specific of the structure of phase α

$$
K_{(h k l) \alpha}=\frac{\left|F_{(h k l) \alpha}\right|^{2} m_{(h k l) \alpha} L p_{(h k l) \alpha}}{V_{c, \alpha}^{2}}
$$

- $x_{\alpha}=$ Volume fraction of phase α
- $\mu_{\mathrm{m}}=$ linear absorption coefficient of the mixture
- $m_{h k l}=$ multiplicity of the hkl reflection
- $V_{\alpha}=$ Unit cell volume
- $L p=$ Lorentz - polarization factor
- $F_{(h k l) \alpha}=$ Structure factor

$$
F_{(h k l)}=\sum_{j=1}^{N} f_{j} e^{2 \pi i\left(h x_{j}+k y_{j}+l z_{j}\right)}
$$

Quantitative Analysis

When the linear absorption coefficient μ_{m} is converted into the mass absorption coefficient $\mu_{\mathrm{m}}{ }^{*}$, and the volume fraction x_{α} is converted into the mass fraction w_{α}, the densities ρ_{a}, ρ_{M} of phase α and the matrix, respectively, must be introduced.
While the density of phase α can be obtained, that of the matrix can be calculated if its composition is known.

$$
I_{(h k l) \alpha}=\frac{K_{\alpha} w_{\alpha}}{\rho_{\alpha}\left[w_{\alpha}\left(\mu_{\alpha}^{*}-\mu_{M}^{*}\right)+\mu_{M}^{*}\right]}
$$

Furthermore, the intensity of an hkl peak can be affected by systematic errors due to preferred orientations.
\rightarrow Quantitative analysis based on the measurement of the intensity one or a few peaks is not recommended

Peak Profile and Microstructure

Full Width at Half Maximum (FWHM)
the width of the diffraction peak, in radians, at a height halfway between background and the peak maximum

Integral Breadth

the total area under the peak divided by the peak height. Is the width of a rectangle having the same area and the same height as the peak
requires very careful evaluation of the tails of the peak and the background

CRYSTAL SIZE

Figure 2. Simulated powder X-ray diffraction patterns for wurtzite CdS spherical particles of different sizes that range from $1 \mu \mathrm{~m}$ to 1 nm . The inset shows the 1,2 , and 5 nm XRD patterns on an expanded \boldsymbol{y}-axis scale for clarity.

In powder diffraction CRYSTAL SIZE should be interpreted as "average dimension of coherent diffraction domains". It is generally indicated as $D v$ (or S)

Peak Profile and Microstructure

Size Broadening - The Scherrer Equation (1918)

$$
\beta=\frac{K \lambda}{S \cos \theta}
$$

$\beta=$ contribution to the width of diffraction peaks, in radians 2theta
$S=$ crystal size
$K=$ constant which depends on crystallite morphology

$$
K=(0.87 \div 1.0)
$$

Peak Profile and Microstructure

Microstrain is the is the set of lattice defects that lead to strain and disorder within the crystal and tends to and tends to broaden the amplitude of the diffraction peaks

point defects,

plane defects, etc.

Strain Broadening - and Wilson (1944) $\quad \beta=4 \varepsilon \tan \theta$
$\beta=$ Contribution to the width of diffraction peaks
$\varepsilon=$ Average strain

$$
\varepsilon=\left\langle\frac{\Delta d}{d}\right\rangle
$$

Gaussian FWHM

$$
\Gamma=\left(\mathrm{U} \tan ^{2} \theta+\mathrm{V} \tan \theta+\mathrm{W}\right)^{1 / 2}
$$

Principally due to instrumental effects (optical aberrations)

Profile fit of LaB_{6}, a profile standard material, free from size and strain broadening. The peak width depends only on instrumental factors

ESRF ID22

$\lambda=0.35430 \AA$

Comparison between XRD patterns of a CdSSe sample taken with a lab diffractometer (a) and ESRF-ID22 (b and c)

$\mathrm{CdS}_{(1-x)} \mathrm{Se}_{x} \quad$ I) $x=0.54(1)$

I) $x=0.561$ (2)
II) $x=0.528(2)$
III) $x=0.474(2)$
IV) $x=0.242(4)$
V) $x=0.185(2)$
$\mathrm{CdS}_{(1-x)} \mathrm{Se}_{x}$
0)

(c)

Total Width

$$
\beta_{\text {Tot }}=\text { integral breadth }=\beta_{\text {instr }}+\beta_{\text {sample }}=\Gamma+\gamma
$$

$$
\beta_{\text {sample }}=\beta_{\text {size }}+\beta_{\text {strain }}=\gamma=\frac{K \lambda}{S \cos \vartheta}+4 \varepsilon \tan \vartheta
$$

$$
\gamma \cos \vartheta=\frac{K \lambda}{S}+4 \varepsilon \cdot \operatorname{sen} \vartheta
$$

$$
y=a+b x
$$

Williamson-Hall plot

Anisotropic Broadening

scattering vector
(a)
(b)

(c)

Figure 6. (a) Experimental and simulated powder XRD patterns for platelet-shaped wurtzite CoS nanoparticles. (b) Highresolution transmission electron microscope images of a CoS nanoplatelet viewed from the (left) side and (right) top. (c) Representation of the different effective thicknesses (i.e., crystalline domain sizes) in different directions of the nanoplates, which correlate with different peak widths in the experimental which correlate with different peak widths in the experimental
XRD pattern. Adapted from ref 8. Copyright 2016 American XRD pattern. Adap
Chemical Society.

Anisotropic Broadening

To take into account the anisotropic broadening there are different approaches. One simple method introduces two further parameters in the profile function, that are modulated by the angle ϕ between the scattering vector of the hkl reflection and the vector that defines the direction of the anisotropic broadening:
from: $\quad \gamma=\frac{X}{\cos \vartheta}+Y \tan \vartheta$
to: $\quad \gamma=\frac{X+X_{e} \cos \varphi}{\cos \vartheta}+\left(Y+Y_{e} \cos \varphi\right) \tan \vartheta$

Indexing of an XRPD pattern

The determination of unit cell parameters from the positions of diffraction peaks is called indexing procedure, because the problem is to assign the proper Miller indices to each reflection.
The procedure is not trivial because the problem does not have a unique solution. Try-and-error computational procedures are often used, however different programs use different strategies. For this reason the use of various programs is recommended (ex. Treor, Dicvol, Ito, McMaille, etc.), and the obtained solutions should be evaluated using statistical parameters.
Possible interplanar distances in a unit cell:
$Q=\left(1 / d_{n k}\right)^{2}=h^{2} a^{* 2}+k^{2} b^{* 2}+l^{2} c^{* 2}+2 k l b^{*} c^{*} \cos \alpha^{*}+2 h l a^{*} c^{*} \cos \beta^{*}+2 h k a^{*} b^{*} \cos \gamma^{*}$
where:
REDUCED FORMULAS
$a^{\star}=\frac{b \times c}{V} ; \quad \cos \alpha^{\star}=\frac{\cos \beta \cdot \cos \gamma-\cos \alpha}{\sin \beta \cdot \sin \gamma}$
$b^{\star}=\frac{c \times a}{V} ; \quad \cos \beta^{\star}=\frac{\cos \alpha \cdot \cos \gamma-\cos \beta}{\sin \alpha \cdot \sin \gamma}$
$c^{\star}=\frac{a \times b}{V} ; \quad \cos \gamma^{\star}=\frac{\cos \alpha \cdot \cos \beta-\cos \gamma}{\sin \alpha \cdot \sin \beta}$

Cubic:

$$
1 / \mathrm{d}^{2}=\left(\mathrm{h}^{2}+\mathrm{k}^{2}+\mathrm{l}^{2}\right) / a^{2}
$$

Tetragonal:

$$
1 / \mathrm{d}^{2}=\left\{\left(\mathrm{h}^{2}+\mathrm{k}^{2}\right) / a^{2}\right\}+\left(\mathrm{l}^{2} / c^{2}\right)
$$

Orthorhombic:

$1 / \mathrm{d}^{2}=\left(\mathrm{h}^{2} / a^{2}\right)+\left(\mathrm{k}^{2} / b^{2}\right)+\left(\mathrm{l}^{2} / c^{2}\right)$

Hexagonal:

$$
1 / \mathrm{d}^{2}=(4 / 3)\left\{\left(\mathrm{h}^{2}+\mathrm{hk}+\mathrm{k}^{2}\right) / a^{2}\right\}+\left(\mathrm{l}^{2} / c^{2}\right)
$$

Monoclinic:

$1 / \mathrm{d}^{2}=\left(1 / \sin ^{2} \beta\right)\left\{\left(\mathrm{h}^{2} / a^{2}\right)+\left(\mathrm{k}^{2} \sin ^{2} \beta / b^{2}\right)+\left(\mathrm{l}^{2} / c^{2}\right)-(2 \mathrm{hl} \cos \beta / a c)\right\}$

Indexing of an XRPD pattern

$$
Q=\left(1 / d_{h k l}\right)^{2}=h^{2} a^{* 2}+k^{2} b^{* 2}+l^{2} c^{* 2}+2 k l b^{*} c^{*} \cos \alpha^{*}+2 h l a^{*} c^{*} \cos \beta^{*}+2 h k a^{*} b^{*} \cos \gamma^{*}
$$

Some figures of merit can estimate the statistical relevance of the solution.
For example the $\mathrm{M}(20)$ by De Wolff: when $\mathrm{M}(20)>20$ and all the first 20 reflections are indexed, it is strongly probable that the solution is correct.

De Wolff figure of merit: $\mathrm{M}_{20}=\mathrm{Q}_{20} /\left(2 \mathrm{~N}_{20}|\Delta \mathrm{Q}|\right.$ avg $)$

- Q20 is the Q value of the 20th peak observed \& indexed
- N_{20} is the number of theoretical reflections with $\mathrm{Q}<\mathrm{Q}_{20}$
- $|\Delta Q|$ avg is the average of the differences between each $Q_{o b s}$ and the nearest $Q_{\text {calc. }}$
$\mathrm{M} 20>20$ is typically a good indicator for a correct indexing

USEFUL FREE SOFTWARE (for academics)

Crystal Structure visualization
VESTA (https://jp-minerals.org/vesta/en/)
Ortep3 - https://www.chem.gla.ac.uk/~louis/software/ortep/index.html
Avogadro - https://avogadro.cc/
Mercury - https://www.ccdc.cam.ac.uk/Community/csd-
community/freemercury/
Powdercell - http://mill2.chem.ucl.ac.uk/ccp/web-
mirrors/powdcell/a_v/v_1/powder/e_cell.html
Powder diffraction data handling
Kalvados - https://www.fzu.cz/~knizek/kalvados/download.html
ATEX - http://www.atex-software.eu/
FullProf - https://www.ill.eu/sites/fullprof/index.html
Search and match
QualX - http://www.ba.ic.cnr.it/softwareic/qualx/
Profex-BGMN - https://www.profex-xrd.org/
Peak fitting
Fityk - https://fityk.nieto.pl/
Kalvados
XFIT - Ask (tutorial: http://ccp14.cryst.bbk.ac.uk/tutorial/xfit-95/xfit.htm)
GSAS - GSAS II - https://subversion.xray.aps.anl.gov/trac/EXPGUI
EXPO2014 - http://www.ba.ic.cnr.it/softwareic/expo/
FullProf - https://www.ill.eu/sites/fullprof/index.htm|
Profex-BGMN - https://www.profex-xrd.org/
Powdercell
Indexing
TREOR90 - NTREOR - ask
DICVOL14-Predict - https://www.icdd.com/predict/
McMAILLE - http://www.cristal.org/McMaille/

Unit cell refinement and space group search
GSAS - GSAS II
EXPO2014
Chekcell - Celref - http://ccp14.cryst.bbk.ac.uk/ccp/web-mirrors/lmgp-laugier-bochu/

Crystal structure solution
FOX - https://fox.vincefn.net/
EXPO2014
GSAS - GSAS II
DASH - from this year!
Rietveld refinement - Quantitative analysis
Quanto - http://www.ba.ic.cnr.it/softwareic/
GSAS-GSAS II
EXPO
MAUD - http://maud.radiographema.com/
FullProf
Profex-BGMN
JANA2020 - http://jana.fzu.cz/

Powder data conversion

PowDLL - http://users.uoi.gr/nkourkou/powdll/
Kalvados
Profex-BGMN

THE END

THANK YOU

[^0]: M.C. Escher
 (1898-1972)

