Dynamic compression response of SiO$_2$ at different strain rates

Karen Appel

HED instrument at European XFEL
3rd DyCoMax Workshop,
January 14th -- 15th, Grenoble, France and online
Acknowledgements

- XFEL team: Markus Schoelmerich, Nicole Biedermann, Christian Plückthun, Lennart Wollenweber, Thomas Preston, Ulf Zastrau, Thomas Tschentscher (all experiments)

- dDAC work: Hanns-Peter Liermann, Alba Mendez

- Optical laser dynamic compression: Cindy Bolme, Arianna Gleason, Sally Tracy, Ray Smith, B. Nagler, E. Galtier, E. Cunningham (LCLS experiments), Marion Harmand, Norimasa Ozaki, Srikant Baht, Robert Farla, Yuishi Inubushi, Kento Kantagiri, Kohei Miyaniishi, Tsubasa Tobase, Tadashi Togashi, Yuhei Umeda, Toshinori Yabuuchi (SACLA experiments)

- Ronald Redmer, Rostock

DFG Research Unit „Matter Under Planetary Interior Conditions“
The HED science within planets and exoplanets

➢ Phase relations
➢ Crystal chemistry
➢ Physical properties (viscosity, density, heat transport, plasticity..)
➢ Reactions of phases at relevant conditions
➢ Evolution of the Earth and planets
Structural properties and phase stabilities of rock-forming minerals at PT regime relevant for deep planetary interiors

- Dynamic optical laser compression experiments (quartz, fused silica, stishovite, cristobalite, GeO$_2$)
- Target design and experimental condition control with hydrodynamic simulations
- Obtain EoS data, identification of phase boundaries, derive melt structure
Set-up dynamic compression at MEC, LCLS, LS84

- Optical drive lasers: 527 nm, 10 ns, 300 μm focal spot, up to 4 x 15 J, ramped pulse
- X-ray diffraction detector (CSPAD)
- VISAR line imaging
- Materials: Al (250 nm), Ta (150 nm), Polyimide, SiO₂, LiF
- X-rays from XFEL (11 keV)
- Experimental and simulated results
Set-up dynamic compression at EH3, SACLA

Strain rates and duration of experimental HP techniques

- Optical laser shocks ($P_{\text{max}} \sim$ few TPa)
- Gas gun ($P_{\text{max}} = 300$ GPa)
- dDAC ($P_{\text{max}} = 165$ GPa)
- D-DIA ($P_{\text{max}} = 10$ GPa)
Set-up dynamic compression in a DAC at P02.2

- Up to 160 GPa
- Up to 160 TPa/sec
- 4 kHz repetition rate

H$_2$O

Schoelmerich, PhD thesis, 2020
Dynamic compression pathways in a dDAC
Results

Optical laser induced dynamic compression
α-cristobalite during optical laser induced dynamic compression
Response of stishovite during dynamic compression

Schoelmerich et al., 2020

Dynamic compression response of SiO2 at different strain rates

Karen Appel, 14th of January 2021
Relative volume change of shock compressed stishovite vs pressure and comparison to other polymorphs
DFT-MD simulation for stishovite
Pressure – density data of stishovite

Schoelmerich et al., 2020
Effect of hydrostacity on the structural transition pathway
Summary on structural transformation pathways in SiO$_2$ polymorphs
Interest in experiments at dynamic compression facility at ESRF

FeO

- Further development of dynamic compression technique
 - Sample preparation
 - Data analysis
 - X-ray techniques
- Study well-known rock-forming systems at ultrahigh pressures and high temperatures
- Apply XANES to study phase relations, electronic and thermo-elastic properties of phases in the binary system Fe-O, to prepare ternary systems (Fe-Mg-O), and quaternary (Fe-Mg-Si-O).
- XRD experiments planned within a DFG funded project at HED (PhD student starts in mid-Feb)

Ozawa et al, 2011