
May 20, 1994

1 of 51

EUROPEAN SYNCHROTRON RADIATION FACILITY
INSTALLATION EUROPEENNE DE RAYONNEMENT SYNCHROTRON

The ESRF Data Format

Version 1.1

Peter Daly
Experiments Division Programming Group
European Synchrotron Radiation Facility
38043 GRENOBLE cedex
France

This document describes the ESRF Data Format; a file storage system for the
European Synchrotron Radiation Facility.

Copyright Notice

Copyright © 1993 European Synchrotron Radiation Facility, BP 220, 38043
GRENOBLE cedex, France.

Permission is granted to make and distribute verbatim copies of this manual
provided the copyright notice and this permission notice are preserved on all
copies.

Permission is granted to copy and distribute modified versions of this manual
under the conditions for verbatim copying, provided that the entire resulting
derived work is distributed under the terms of a permission notice identical to
this one.

Permission is granted to copy and distribute translations of this manual into
another language, under the above conditions for modified versions, except that
this permission notice may be stated in a translation approved by ESRF.

Printed copies of this manual are available (at cost) by writing to:

Experiments Division Programming Group
European Synchrotron Radiation Facility
BP 220,
38043 GRENOBLE cedex
France

Telephone: (+33) 76.88.20.00 Fax: (+33) 76.88.25.42

Terms and Conditions of Distribution

2 of 51 The ESRF Data Format

Terms and Conditions of Distribution

All Rights Reserved

1. This software was written by the Experiments Division Programming Group
(EXPG) at the European Synchrotron Radiation Facility (ESRF). It is one of the
goals of the ESRF to have the results of work which they support made available to
the public and disseminated as widely as possible. This material is being made avail-
able to the public in furtherance of this objective.

2. ESRF asks, but does not require, that a notice similar to the one below appears in
any software that is developed using this code:

The File Format libraries used in this software were developed by the European
Synchrotron Radiation Facility and are available from them via the Public
Domain.

3. As part of ESRF/EXPG’s two goals of preserving the free status of all of our free
software (and derivatives), and of promoting the sharing and reuse of software gen-
erally, you are permitted and encouraged to use, copy, modify, and distribute this
software and its documentation for any purpose and without fee. Provided that the a
notice to ‘ESRF/EXPG’ appear in all copies, and that you also do the following:

a) cause the modified files to carry prominent notices stating that you changed the
files and the date of any change

b) for the whole of any work that you distribute or publish, that contains these rou-
tines or any part thereof, either with or without modifications, then any subsequent
licence that you charge to all third parties must exclude the ESRF/EXPG software
and such ESRF/EXPG software can only be included under the terms of this Condi-
tions of Distribution (except that you may choose to grant warranty protection to
some or all third parties, at your option).

4. You may not copy, modify, sublicence, distribute or transfer the software except as
expressly provided under either this agreement or as in the case of Software that is in
itself written by others and used in the library by the Copyright notices of the origi-
nal authors. Any attempt otherwise to copy, modify, sublicence, distribute or transfer
the Software is void, and will automatically terminate your rights to use the Soft-
ware under this Agreement.

5. For the software considered as being of ESRF/EXPG, (and for items used that are
written by others that do not have an explicit statement of warranty then the follow-
ing warranty statement also applies) these are supplied under the following condi-
tions.

No Warranty

Because the software is licenced free of charge, there is no warranty for the soft-
ware, to the extent permitted by applicable law. Except when otherwise stated in
writing the copyright holders and/or other parties provide the program “as is” with-
out warranty of any kind, either expressed or implied, including, but not limited to,

Terms and Conditions of Distribution

3 of 51 The ESRF Data Format

the implied warranties of merchantability and fitness for a particular purpose. The
entire risk as to the quality and performance of the program is with you. Should the
program prove defective, you assume the cost of all necessary servicing, repair or
correction.

In no event unless required by applicable law or agreed to in writing will any copy-
right holder, or any other party who may modify and/or redistribute the program as
permitted above, be liable to you for damages, including any general, special, inci-
dental or consequential damages arising out of the use or inability to use the program
(including but not limited to loss of data or data being rendered inaccurate or losses
sustained by you or third parties or a failure of the program to operate with any other
programs), even if such holder or other party has been advised of the possibility of
such damages.

6. For items of software written by others and used by EXPG if the authors have given
a statement of copyright and warranties then those notices apply to those items soft-
ware.

7. You are permitted to copy and or modify this Conditions of Distribution Notice for
inclusion in other software.

4 of 51 The ESRF Data Format

Structure and Concepts

The ESRF Data Format 5 of 51

1.0 Structure and Concepts

1.1 Introduction

This document describes a data format for storage and retrieval of data at the
ESRF. The format has the properties described below. It is envisaged that
newer versions of the software will be backwardly compatible with older ver-
sions.

• it should be flexible enough to cover all types of data collected at the ESRF

• it should allow multiple sets of disparate data

• it should provide as much information about the data itself and any informa-
tion the user should require with it

• all the calls to read/write the data should be callable from both C and Fortran

• it should be extensible

The basic principle behind the format is that a user who can define his data in a
suitable way should be able to obtain that data regardless of the machine or for-
mat it is written in. Given the fact that there is no definition of what data actually
is the format must be flexible enough to cope with different user requirements.
The data should be describable in a standard way, if this is possible. For exam-
ple, a 16-bit image would need the X and Y dimensions, the byte order of the
image and it’s type to describe the image itself.

1.2 Data Format Definitions

1.2.1 Logical File Structure

The data file has a logical structure, which is a view of the data file irrespective
of it’s physical disk layout, as follows: a Global Header Section that describes
the properties belonging to all data within the file and a number of Data Blocks,
each with it’s own Header Section that describes properties local to this partic-
ular Data Section, these local values will displace any global value in the Glo-
bal Header Section. That is to say, if a global header section specifies an image
size of 512x512 and a particular image in the file specifies 1024x1024 then the

Structure and Concepts

6 of 51 The ESRF Data Format

1024x1024 size is used; if an image has no information about it’s dimensions
then the 512x512 value will be used.

In fact there can be more than one global header section providing that the user
can identify for himself which global header belongs to which header sections.
Files are parsed when opened and the initial Global Header Section is the one
that contains the VersionNumber keyword (if this does not exist no Global
Header Section is defined). All the headers are written in ASCII for readability,
and each property in a header is described by a statement of the form

KEYWORD = value ;

the KEYWORD identifies the property, the ‘=’ acts as a separator between the
keyword and it’s value(s), the semi-colon terminates the statement, thus a state-
ment can extend over several lines, the rest of the line (up to the newline) is
ignored and can act as a comment; whitespace is allowed between any of the
elements. Blank lines are ignored. Values can consist of single or multiple items
(arrays). The significant length of a keyword is currently 64 characters, although
the actual length can be longer if the user wishes.

For each logical header it is the user’s responsibility to ensure that some key-
word (or group of keywords) can be used to identify the header, failure to do this
will mean that a particular header may be unavailable for use. For example,
images may be stored with Image = 1, Image = 2, etc.

In the data blocks, the Data Section contains binary1 data described in it’s
header. The Data Section may be empty (i.e. no binary data) but if it does exist
it must immediately follow the Header Section. Within each Data Section the
data may be compressed with a choice of available techniques, random access
to any Data Section is allowed. Whitespace is allowed between data blocks to
align the start of a block on a convenient boundary (if appropriate).

Global Header Section

Header Section

Data Section

Header Section

Data Section

Figure 1: An overview of the data format

Data Block

Data Block

Structure and Concepts

The ESRF Data Format 7 of 51

It should be noted that the format does not require any particular order to the
data blocks within the file and implies no particular size of storage element. The
Data Sections are stored in whatever size storage element is required by the
user, typical values will be Short Integers (16 bit data), Integers (32 bit data),
Real Values (IEEE) and some can also be defined as signed or unsigned as
required.

Furthermore, there is no requirement that a Data Section read from a file and
returned as, for example, REAL is actually stored in the file in the same format
that is required. This implies that conversion between the different storage ele-
ments takes place.

When reading or writing a piece of data the user may choose to identify the cor-
rect place to put it either by performing a search of the headers or by specifying
a header number. For example, if we wish to read the title of image 3 then we
must specify what we want (i.e. the title) and how to find that information - we
can either specify the search condition is ‘Image = 3’ or (if we know which
header this information is to be found) by specifying the header number for this
item. However, user’s may not always know this value an cannot assume a par-
ticular value for a header since the system itself assigns integers as necessary.
In general, the search condition ‘Image = 3’ would be used.

1.2.2 Physical File Structure

Although the logical structure is all one needs to know at the user level, this sec-
tion describes the technique of writing information to the file and the reasons for
the choice of header format. Furthermore, users can write data files in this for-
mat, simply with print statements, provided they remain faithful to the header
identifier. At the disk level the structure of the file follows a tagged list; each
header has an identity number of the form:

HeaderID = EH:000002:000003:000001;

the numbers are, respectively, the current header number; the header number
of the next portion of the header and the header number of the previous portion
of the header (the EH stands for ESRF Header and is purely arbitrary). A value
of zero in the next header field shows that this header is the last in this group
and a zero in the previous field shows that this is the first portion of the group.

This technique is used rather than byte offsets from the start of the file so that
the headers themselves are editable by an editor such as emacs. Fixed length
fields are used (for this statement only) since each header must have an identi-
fier and variable length identifiers would create problems with overflow. Each
header may contain the next strip of data in the binary section. Also in each

1. binary here means that the space between headers is treated as a block of data that the user can
interpret at will. For some common storage requirements (e.g. unsigned short integer images) the
data will be written in a standard way so the user need not bother about the details, but in some
cases the user will simply receive a block of data with no particular emphasis placed on it.

Structure and Concepts

8 of 51 The ESRF Data Format

header is a Size keyword to describe the physical size of the data stored. Both
the HeaderID and the Size keyword are managed by the software and should
not be changed by the user.

This also implies that a file may have X physical headers but Y logical headers
(where Y <= X) since there may be several physical headers to one logical
header. As an example, imagine we have the following HeaderID’s in a file:

HeaderID = EH:000001:000000:000000 ;

HeaderID = EH:000002:000005:000000 ;

HeaderID = EH:000003:000000:000000 ;

HeaderID = EH:000004:000000:000005 ;

HeaderID = EH:000005:000004:000002 ;

We can see that although there are 5 physical headers in the file, logically there
are only 3, since headers 2, 4 and 5 are part of the same logical header. In this
case header 2 is (in sequence) made up of headers 2, 5 and 4. The manage-
ment of this logical versus physical view is provided by the software.

This physical structure allows the user to read/write arbitrary part of a data sec-
tion and/or header without the penalty of file reorganisation. When new header
information is to be written the software caches it in memory until the file is
closed to prevent unnecessary fragmentation of the headers - users can explic-
itly flush the headers with a FlushTable command in the Write Data routine.

1.3 Header Section Structure

The header sections of the data file are described by ASCII statements delim-
ited by the curly braces ‘{‘ and ‘}’. These braces act as start-of-header and end-
of-header markers. The keywords chosen are case insensitive, but the value
will have it’s case preserved.

It is also possible to have a site file where various properties can be defined for
a particular site. For example, at the ESRF the site file may contain the defini-
tions of the instruments in some sense meaningful to the experiment. If this file
is delimited with the curly braces mentioned above then it will be parsable by
the same routines that read the data file.

1.3.1 Example of a Header

Below is an example of a header.

{

; This is an example header. Comments in the header are ignored as are blank lines.

HeaderID = EH:000002:000006:000003 ; this Identifier should not be changed by hand

Structure and Concepts

The ESRF Data Format 9 of 51

The example shows the following points:

• this header is number 2, the next logical portion of the header section is
number 6 and the previous portion of the header was number 3, thus there
are many physical headers to this logical one. The other portions of this logi-
cal header would have other suitable keywords and descriptions required by
the user.

• comment lines are allowed by prefacing with a semi-colon. The comment
extends up to the newline blank lines in the header are ignored,

• some symbolic names are pre-defined e.g. LowByteFirst and HighByteFirst
describe the way that integers are stored (the ‘endedness’ of the machine),

• multiple values (arrays) are allowed (e.g. the Cell statement below),

• some keywords can be initialised but have no value defined until a later time
(e.g. the ProposalNumber keyword),

the image in this file is 1187x1187 pixels and is compressed - the Size keyword
records the size of this section of the compressed image

1.4 Pre-defined Names for common keywords

The table in Appendix 2 describes the pre-defined keywords for some common
statements. Some keywords are required to describe a particular Data Section
whilst others are highly recommended. For example, the HeaderID is required,
but the ByteOrder keyword is not required (since it will default to the machine
type you are using) but is highly recommended so that Data Sections can be
swapped between different machines with no loss of generality. The Size key-
word is compulsory if a header has a Data Section.

1.5 Access to Data Sections

Since the Data Sections may contain any data the user must define how he
wishes to identify the Data Sections - access is object-oriented. The user must
define the keywords, their values and their types in order to choose a particular

VersionNumber = 1.0 ; version number of software

ByteOrder = LowByteFirst ; Little ended data

DataType = UnsignedShortInteger ; 2 bytes per pixel

Size = 2817492 ; Compressed image size in bytes

Dim_1= 1187 ; X-pixels

Dim_2 = 1187 ; Y-pixels

Compression = RunLengthEncoded ; compression method used

DetectorName = MAR Scanner ; Detector used

Title = “TEST IMAGE PLATE DATA” ; self-explanatory

Cell = 105.77 105.77 153.37 90 90 120 ; Cell a b c alpha beta gamma

SampleName = “Unknown” ; self-explanatory

ProposalNumber = ; this value is issued by the ESRF

}

Structure and Concepts

10 of 51 The ESRF Data Format

Data Section. A Data Section may need more than one keyword to access it
(e.g. imagine a user who wants an image described by Image = 1 and Date =
some date).

In fact, the Data Sections may contain disparate types of data and the user can
choose which keys to access those sections he wants. For example, a data file
may contain Data Sections that contain calibration information, which the user
will identify by the keyword CalibrationScan (with some integer value) and
image data that he wishes to identify by the keyword Image (and a correspond-
ing integer to specify it).

1.5.1 Sub-sections of Data

It can be seen from the physical file layout that there is no requirement for all the
data of, for example, an image be recorded in one Data Section. The data can
be divided up into strips (of different sizes) and that each strip can be com-
pressed with a different compression technique. This is managed by the soft-
ware, however, the user must specify the strip number so that data is not
overwritten accidentally.

Furthermore, the interfaces below provide for the user to specify a sub-portion
of the data rather than obtain the whole block - again, imagine an image where
we only want a small portion of it.

1.5.2 Defined data types for data stored

The keyword DataType is used to describe the data in the data section. It can
take any of the symbolic shown in the table below. In the case of ComplexByte,
ComplexShortInteger, ComplexInteger and ComplexLongInteger the values are
treated as signed.

1.5.3 Defined types for keywords

When a user wishes to read a header item or search for a header he must spec-
ify 3 items of information: the keyword, it’s value and it’s type. For example, to
find a data section described by the statement

Image = 1;

DataType descriptors

SignedByte UnsignedByte ComplexByte

SignedShort UnsignedShort ComplexShortInteger

SignedInteger UnsignedInteger ComplexInteger

SignedLong UnsignedLong ComplexLongInteger

FloatValue ComplexFloat

DoubleValue ComplexDouble

Structure and Concepts

The ESRF Data Format 11 of 51

the user would need to specify the keyword “image”, the value (in this case 1)
and it’s type for a suitable comparison to be made - currently, the types can be
IntegerValue, FloatValue or StringValue. We call these keyword descriptors. In
the example above the type would, of course, be IntegerValue.

1.6 Interfaces to Manipulate the Data file

Below are the interface routines to manipulate the data file. In general the rou-
tines themselves will return the (integer) symbolic value RoutineSucceeded for
success or RoutineFailed for failure. Most routines to access the data have
three arguments:

• a channel number to specify which file to use, this is an integer to a (private)
array - each element of this array is a structure that records various proper-
ties of the file opened,

• a control block structure to set values and return results. This is currently a
block with 6 values. We will look at several different cases below,

• a returned integer error value to describe success or failure of the routine.
This value gives a more explicit description of the reason the symbolic name
RoutineFailed was returned. A routine is provided so that the user can be
given a description of the error.

Various flag values have been defined to make the use of the library easier.
They are explicitly listed below - see the appropriate call definition for use of
these flags:

Flag Used for

ReadData Specifies Data Section is to be read

ReadHeader Specifies a Header Section is to be read

InquireData Specify that we want to know the size and type of the data
without the overhead of reading it from the disk

WriteData Specifies Data Section is to be written

WriteHeader Specifies a Header Section is to be written

SearchCondition Tells the interface then argument 5 is a block of conditions
rather than a simple header number. This allows searches for
different matches and composite keys

FlushTable Explicitly flush the buffers rather than cache some headers
until the files are closed. Can cause fragmentation of the head-
ers.

AllocateSpace will cause the library to use malloc to create the necessary
space. If this is omitted the routines will take the start address
as the target for the data and the sizes as inputs.

Structure and Concepts

12 of 51 The ESRF Data Format

Compression

The ESRF Data Format 13 of 51

2.0 Compression

2.1 Introduction

It is envisaged that different compression techniques will be made available to
the user using a variety of techniques so that the size of the file can be reduced
as much as possible. It goes without saying, however, that users who wish to
use this facility do so with the penalty of their data taking longer to read/write.

2.2 Diffraction Image Data Compression

The Diffraction Image Data Compression technique - using the symbolic name
DiffDataCompress has been donated by Jan Peter Abrahams, MRC, Laboratory
of Molecular Biology, Hills Road, Cambridge. The description given below is
from comments in the code itself.

This file contains functions capable of compressing and decompressing images.
It is especially suited for X-ray diffraction patterns, or other image formats in
which orthogonal pixels contain “grey-levels” and vary smoothly across the
image. Clean images measured by a MAR-research image plate scanner con-
taining two bytes per pixel can be compressed by a factor of 3.5 to 4.5.

Since the images are encoded in a byte-stream, there should be no problem
concerning big- or little ended machines: both will produce an identical packed
image.

Compression is achieved by first calculating the differences between every pixel
and the truncated value of four of its neighbours. For example:

the difference for a pixel at img[x, y] is:

img[x, y] - (int) (img[x-1, y-1] + img[x-1, y] + img[x-1, y+1] + img[x, y-1]) / 4

After calculating the differences, they are encoded in a packed array. A packed
array consists of consecutive chunks which have the following format:

• Three bits containing the logarithm base 2 of the number of pixels encoded
in the chunk.

• Three bits defining the number of bits used to encode one element of the
chunk. The value of these three bits is used as index in a lookup table to get
the actual number of bits of the elements of the chunk.

• The truncated pixel differences.

Compression

14 of 51 The ESRF Data Format

The C Interface

The ESRF Data Format 15 of 51

3.0 The C Interface

3.1 Introduction

In the following descriptions, each function is described using normal C syntax.
The return type is given in the definition and then the functions arguments are
described as INPUT (input only), OUTPUT (output only) or INOUT (both input
and output). There then follows a brief description of the purpose of the call.

In the C interface a pre-defined typedef is provided called ArgBlk. This can be
used to generate the Structure argument used by the calls (see the C examples
section). This is currently defined as:

typedef struct ArgumentBlock {
int ConvertType, /* what data type */

ConvertFlag; /* what to do */
void *StartData, /* memory location for data/header */

Sizes, / sizes of the data or header value */
Offsets, / sub-section of data or header type */
ControlBlock / search condition or header number */

} ArgBlk;

As an example, to fill in this Structure to Read the data defined by Image = 1;
the user would write the following code. Note that we use a search condition to
find the data:

int *Block[4], ImageNumber = 1;
ArgBlk *Args = (ArgBlk *) malloc (sizeof (argBlk));

/* set up the search condition */
Block[0] = 1; /* 1 condition */
Block[1] = (int *) “image”; /* Keyword */
Block[2] = (int *) &ImageNumber; /* Value */
Block[3] = IntegerValue; /* type */

/* now set up the argument structure */
Args->ConvertType = UnsignedShort;/* return data type */
/* use malloc and search for data by using a condition */
Args->ConvertFlags = ReadData & AllocateSpace & SearchCondition;
Args->StartData = (void *) NULL; /* start address returned here */
Args->Sizes = (void *) NULL; /* sizes returned here */
Args->Offsets = (void *) NULL; /* no sub-image required */
Args->ControlBlock = (void *) Block;/* pointer to search conditions */

3.2 int ExpgOpenDataFile (char *Filename, int *DataErrorValue)

INPUT: char *Filename
OUTPUT: int *DataErrorValue
INOUT: None
FUNCTION: open the Data File

This routine will open up the appropriate file and return a channel number (an
integer provided by the calls, which is an index into a private data structure -
users should not try to access this structure directly).

The C Interface

16 of 51 The ESRF Data Format

In the event of a failure the channel number will be the value of the Symbolic
name RoutineFailed.

The Filename is first checked as an environment variable; otherwise it is taken
as a literal pathname. This allows the user to specify whatever filename he
chooses outside the program, if he so wishes. For example, the call:

int stream, ErrorValue;
stream = ExpgOpenDataFIle (“IMAGE1”, &ErrorValue)

will look for an environment variable IMAGE1 and use it’s value. If this does not
exist then the file opened will be IMAGE1. In the ExpgOpenDataFile routine the
opening of the file causes all the headers to be read and kept in a private data
structure in memory. The maximum number of streams that can be open at any
time is (arbitrarily) the symbolic name MaxFiles. In all the following calls int
Stream refers to the value returned by these calls.

The routine will also use a simple test for an ESRF Data Format File in that the
first non-blank element must be an open curly bracket - if it finds anything else it
will assume the file is not in the ESRF format and return with DataErrorValue set
to the appropriate error number.

3.3 int ExpgCloseDataFile (int Stream, int *DataErrorValue)

INPUT: int Stream
OUTPUT: int *DataErrorValue
INOUT: None
FUNCTION: close the Data File

This routine will close the appropriate file and free the channel for other calls. All
the data structures created by a call to ExpgOpenDataFile with this stream
number are freed.

In the event of failure, the user should check the possible reasons for this in his
code and should not use the freed channel number again since this may lead to
corruption of the file(s).

Note: if the file has been updated or has had new information written to it then
this call must be used to ensure the buffers are flushed to it because this call
searches the internal tables to find headers that have not been written to the file
and writes them out. If you only read from a file then this call is not explicitly
needed but it is good practice to include a close with each open statement you
use.

3.4 int ExpgReadDataFile (int Stream, void *Structure, int *DataErrorValue)

INPUT: int Stream
OUTPUT: int *DataErrorValue
INOUT: void *Structure
FUNCTION: performs various read operations on the data.

The C Interface

The ESRF Data Format 17 of 51

The Structure (defined in the introduction above) is used to pass parameters in
and out of the routine. See the examples in the next section.

If you open a data file and only make read operations on it then you do not need
to explicitly call ExpgCloseDataFile, since the file itself will not have changed.

3.4.1 Example

To fill in this Structure to Read a title from the data block referenced by Image =
1; the user would write the following code. Note that we use a search condition
to find the data:

int *Block[4], ImageNumber = 1, ErrorValue, ReadError;
ArgBlk *Args = (ArgBlk *) malloc (sizeof (argBlk));

/* set up the search condition */
Block[0] = 1; /* 1 condition */
Block[1] = (int *) “image”; /* Keyword */
Block[2] = (int *) &ImageNumber; /* Value */
Block[3] = IntegerValue; /* type */

/* now set up the argument structure */
Args->ConvertType = NoSpecificValue;/* unused for ReadHeader */
Args->ConvertFlags = ReadHeader & SearchCondition;/* use malloc and
search for data */
Args->StartData = (void *) “title”;/* Keyword to read*/
Args->Sizes = (void *) NULL; /* value returned here */
Args->Offsets = (void *) StringValue;/* type */
Args->ControlBlock = (void *) Block;/* pointer to search conditions */
ErrorValue = ExpgReadDataFile (Stream, Args, &ReadError);/* perform the
read */

3.5 int ExpgWriteDataFile (int Stream, void *Structure, int *DataErrorValue)

INPUT: int Stream
OUTPUT: int *DataErrorValue
INOUT: void *Structure
FUNCTION: performs various write operations on the file.

Writing data to the file always causes the data to be written immediately since
the libraries have no way of knowing how long this data may exist.

Writing header information does not always cause an explicit write to the file
(they will be cached in memory) to improve performance and help prevent frag-
mentation of the file. This header information will only be written either by using
the FlushTable command or by closing the file.

If you write header information to the data file, or add new header information
then you must explicitly call ExpgCloseDataFile to flush the internal tables - fail-
ure to do so will mean that the new information is not reflected in the file.

The C Interface

18 of 51 The ESRF Data Format

3.5.1 Example

To fill in this Structure to Write an image (with value identified by an integer), the
user would write the following code. Note that we use a search condition to find
where to write the data, we also assume a stream is already open and the data
exists:

int *Block[4], ImageNumber = 1, Sizes[3], ErrorValue, WriteError;
ArgBlk *Args;
unsigned short int *Data;
Sizes[0] = 2; /* Number of dimensions */
Sizes[1] = 512; /* X Dimension */
Sizes[2] = 256; /* Y dimension */

/* set up the search condition */
Block[0] = 1; /* 1 condition */
Block[1] = (int *) “image”; /* Keyword */
Block[2] = (int *) &ImageNumber; /* Value */
Block[3] = IntegerValue; /* type */

/* now set up the argument structure */
Args = (ArgBlk *) malloc (sizeof (argBlk));/* allocate the space */
Args->ConvertType = UnsignedShort;/* return data as this type */
Args->ConvertFlags = WriteData & SearchCondition;/* use malloc and search
for data */
Args->StartData = (void *) Data; /* start address returned here */
Args->Sizes = (void *) &Sizes; /* sizes returned here */
Args->Offsets = (void *) NULL; /* no sub-image required */
Args->ControlBlock = (void *) Block;/* pointer to search conditions */
ErrorValue = ExpgWriteDataFile (Stream, Args, &WriteError);/* write the
data */

3.6 char *ExpgDataFormatVersion (void)

INPUT: None
OUTPUT: None
INOUT: None
FUNCTION: returns a string value for the current version of the software.

3.7 void ExpgCatchInterrupt (Flag)

INPUT: int Flag
OUTPUT: None
INOUT: None
FUNCTION: Toggles the interrupt catch facility on or off. If the Flag is True
then the signal SIGINT (usually ^C) is caught and all files are closed before any
other action. If the Flag is False then the old signal handler (which may be no
action) is re-established and no flushing of headers is performed. The default
start-up action is OFF.

3.8 char *ExpgReportStatus (int ErrorValue, int DataErrorValue, int
DisplayFlag)

INPUT: int ErrorValue
int DataErrorValue
int DisplayFlag

The C Interface

The ESRF Data Format 19 of 51

OUTPUT: None
INOUT: None
FUNCTION: give a report on the error that occurred.

The return value is a pointer to a string that contains the Error Message Text.

The value ErrorValue is the return value of the routine (generally
RoutineFailed), DataErrorValue is the returned error code from the routine that
the user wishes to report on and DisplayFlag is set to True if the user wishes
the routine to output the message or False if the routine does not output the
message - this can be used, for example, by windows software where the pro-
grammer wishes to obtain the string and display it in it’s own window.

A typical piece of code may look like (Note that ErrorValue will invariable be
RoutineFailed and the real error number is held in DataErrorValue):

int ErrorValue, DataErrorValue;
if ((ErrorValue = ExpgOpenDataFile (“myfile”, &DataErrorvalue)) !=
RoutineSucceeded)

(void) ExpgReportStatus (ErrorValue, DataErrorValue, True);

3.9 int ExpgDisplayHeaders (int Stream, int *DataErrorValue)

INPUT: int Stream
OUTPUT: int *DataErrorValue
INOUT: None
FUNCTION: this routine the will display all the headers currently in mem-
ory to the standard output device.

3.10 int ExpgGetByteOrder (void)

INPUT: None
OUTPUT: None
INOUT: None
FUNCTION: determine ‘endedness’ of your machine

A support routine to determine the byte order of your machine. Return Values
are HighByteFirst (True) or LowByteFirst (False).

This routine describes the way in which integers are stored in the data (either
1234 or 4321).

The C Interface

20 of 51 The ESRF Data Format

C Examples

The ESRF Data Format 21 of 51

4.0 C Examples

4.1 Writing Data Blocks

To write data blocks the control structure has all elements as inputs and are
used as follows:

Where:

• Output Conversion Type describes the format of the data as it is to be written
to the file, it is one of the DataType descriptors show in the table in section
5.2

• JPEG, JPEG_Lossy, RunLengthEncoded, DiffDataCompress are different
compression techniques to apply to the data,

• SearchCondition specifies whether the headers need to be searched to find
the correct place to put the data. If present the last argument is a pointer to
an array of the form where element 0 is the number of conditions and then
we have 3 elements per condition to specify the keyword, it’s value and it’s
type (IntegerValue, StringValue or FloatValue), if SearchCondition is not
present this last element can contain the header number itself.

4.1.1 Example

Below is a subroutine to write out an image from memory to the data file. We do
not show how the image is generated. The parameters of the call are the stream
to write the data to (previously opened by a call to ExpgOpenDataFile), the
image number (we identify images as Image = 1, Image = 2, etc.), the dimen-

Element Used for Values

ConvertType Output Conversion
Type

One of the types defined above e.g.
UnsignedInteger

ConvertFlags Control Flags WriteData AND any of:
SearchCondition, JPEG,
JPEG_Lossy, RunLengthEncoded,
DiffDataCompress

StartData Address of Start of Data Start of data in memory

Sizes Address of array of
dimensions

element 0 is number of dimensions,
then the sizes themselves

Offsets Address of an array of
offsets to get sub-sec-
tions of data

array is 2 * N in size (where N is
number of dimensions)

ControlBlock Address of a control
block to specify which
data to write or a header
number

if SearchCondition is not specified
this value may be replaced by a
header number

C Examples

22 of 51 The ESRF Data Format

sions of the image, it’s type (e.g. UnsignedShort) and it’s start address in mem-
ory. A typical call may look like this:

WriteImage (stream, 1, 512, 768, UnsignedShort, start) /* write out image
1 */
#include “esrf_data_format.h”
int WriteImage (int stream, int Number, int X, int Y, int Type, void
*start)
{

int i, Sizes[3], *CtrlBlock[4], Count, ErrorValue;
long Size;
ArgBlk Arguments;

Sizes[0] = 2; /* set up the dimensions */
Sizes[1] = X;
Sizes[2] = Y;
Size = X * Y * DataSize ((void *) Type, True)

Arguments.ConvertType = Type;/* assign the Output Data Type */
Arguments.ConvertFlags = WriteData & SearchCondition;/* what we

want to do */
Arguments.StartData = (void *) start;/* start position of the data

*/
Arguments.Sizes = (void *) &Sizes;/* the dimensions of the data */
Arguments.Offsets = (void *) NULL;/* not needed */
Arguments.ControlBlock = (void *) CtrlBlock;/* specify the search

array */

Count = 1;
CtrlBlock[0] = (int *) Count;/* number of conditions */
CtrlBlock[1] = (int *) “Image”;/* Key word */
CtrlBlock[2] = (int *) &Number;/* Value */
CtrlBlock[3] = (int *) IntegerValue;/* Type */

i = ExpgWriteDataFile (stream, (int *) Arguments, &ErrorValue);
if (i != RoutineSucceeded) (void) ExpgReportStatus (i, ErrorValue,

True);
return (i);

} /* End of WriteImage */

4.2 Writing Header Information

To write header information the control structure is, again, all inputs and has the
following fields:

Element Used for Values

ConvertType Currently Unused

ConvertFlags Control Flags WriteHeader (AND
SearchCondition if necessary)

StartData Address of Start of Data pointer to the Keyword

Sizes Address of array of
dimensions

pointer to its value

C Examples

The ESRF Data Format 23 of 51

4.2.1 Example

Below is a section of code to write out an image from memory to the data file.
We do not show how the image is generated. Note that in this example we wish
to describe the image with the keyword Image = 1; this means that we specify a
search condition (of Image = 1). The example assumes that we have already
opened a file using ExpgOpenDatFile and the channel number is returned in the
integer stream:

#include “esrf_data_format.h”
int i, stream, ImageNumber, *CtrlBlock[4], Sizes[3], ErrorValue;
short *data; /* pointer to the data */
ArgBlk Arguments; /* define our argument block */

ImageNumber= 1; /* j records the image number */
Sizes[0] = 2; /* number of dimensions */
Sizes[1] = 1152; /* x dimension */
Sizes[2] = 1482 /* y dimension */

CtrlBlock[0] = (int *) 1; /* number of search conditions */
CtrlBlock[1] = (int *) “Image”;/* keyword */
CtrlBlock[2] = (int *) &ImageNumber;/* value */
CtrlBlock[3] = (int *) IntegerValue;/* type */

Arguments.ConvertType = UnsignedShort;/* output type */
Arguments.ConvertFlags = WriteHeader & SearchCondition;
Arguments.StartData = (void *) data;/* where the data starts */
Arguments.Sizes = (void *) Sizes;/* the sizes */
Arguments.Offsets = (void *) NULL;/* not used in this case */
Arguments.ControlBlock = (void *) CtrlBlock;/* the search block */

i = ExpgWriteDataFile (stream, (int *) Arguments, &ErrorValue);
if (i != RoutineSucceeded) (void) ExpgReportStatus (i, ErrorValue,

True);

4.3 Reading Data Blocks

To read data blocks the control structure can have both inputs and outputs
according to the various flags - the meaning of the fields are:

Offsets Type of Data IntegerValue, FloatValue or
StringValue

ControlBlock Address of a control
block to specify which
data to write or a header
number

if SearchCondition is not specified
this value may be replaced by a
header number

Element Used for Values

ConvertType Input Conversion Type One of the types defined above e.g.
UnsignedInteger

C Examples

24 of 51 The ESRF Data Format

Where:

• AllocateSpace is used to tell the routines whether or not space needs to be
allocated by the routines themselves. If the flag is present the routines will
allocate a suitable space and fill it with data - element 2 will be the returned
address of this block (i.e. an output) as will element 3. If AllocateSpace is not
present then the routines will assume that space has been allocated already
and will use elements 2 and 3 as inputs to tell the routine where to place the
data in memory.

4.3.1 Example

Below is a section of code to write out an image from memory to the data file.
We do not show how the image is generated. Note that in this example we wish
to describe the image with the keyword Image = 1; this means that we specify a
search condition (of Image = 1). The example assumes that we have already
opened a file using ExpgOpenDataFile and the channel number is returned in
the integer stream:

#include “esrf_data_format.h”
int i, stream, ImageNumber, *CtrlBlock[4], Sizes[3], ErrorValue;
short *data; /* pointer to the data */
ArgBlk Arguments; /* define our argument block */
ImageNumber= 1; /* j records the image number */
Sizes[0] = 2; /* number of dimensions */
Sizes[1] = 1152; /* x dimension */
Sizes[2] = 1482 /* y dimension */
CtrlBlock[0] = (int *) 1; /* number of search conditions */
CtrlBlock[1] = (int *) “Image”;/* keyword to search for */
CtrlBlock[2] = (int *) &ImageNumber;/* value of the image number */
CtrlBlock[3] = (int *) IntegerValue;/* its type for the compare rou-

tine */
Arguments.ConvertType = UnsignedShort;/* Data to be written out as

this type */
Arguments.ConvertFlags = ReadData & SearchCondition;
Arguments.StartData = (void *) data;/* where the data starts */
Arguments.Sizes = (void *) Sizes;/* the sizes */
Arguments.Offsets = (void *) NULL;/* not used in this case */
Arguments.ControlBlock = (void *) CtrlBlock;/* the search block */

ConvertFlags Control Flags ReadData AND any of:
SearchCondition, AllocateSpace

StartData Address of Start of
Data

Start of data in memory (see below)

Sizes Address of array of
dimensions

element 0 is number of dimensions,
then the sizes themselves

Offsets Address of an array of
offsets to get sub-sec-
tions of data

array is 2 * N in size (where N is
number of dimensions)

ControlBlock Address of a control
block to specify which
data to write or a
header number

if SearchCondition is not specified
this value may be replaced by a
header number

C Examples

The ESRF Data Format 25 of 51

i = ExpgReadDataFile (stream, (int *) Arguments, &ErrorValue);
if (i != RoutineSucceeded) (void) ExpgReportStatus (i, ErrorValue,

True);

4.4 Inquiring about Data Blocks

It is possible to read information about a data block without actually reading the
data. That is we can inquire about the various sizes and dimensions of the data.
In this case the fields are:

Where:

• element 3 has N + 2 parts (where N is the number of dimensions found). the
first element is the number of dimensions, then the dimensions themselves
and, finally, the size of the data in this header.

4.4.1 Example

Below is a section of code to find the details of an image specified by Image = 1;

#include “esrf_data_format.h”
int i, stream, ImageNumber, *CtrlBlock[4], *Sizes, ErrorValue;
ArgBlk Arguments; /* define our argument block */
ImageNumber= 1; /* j records the image number */
CtrlBlock[0] = (int *) 1; /* number of search conditions */
CtrlBlock[1] = (int *) “Image”;/* keyword to search for */
CtrlBlock[2] = (int *) &ImageNumber;/* value of the image number */
CtrlBlock[3] = (int *) IntegerValue;/* its type for the compare rou-

tine */
Arguments.ConvertType = NoSpecificValue;/* the data type returned

here */
Arguments.ConvertFlags = InquireData & SearchCondition;
Arguments.StartData = (void *) NULL;/* unused */
Arguments.Sizes = (void *) NULL;/* sizes returned here */
Arguments.Offsets = (void *) NULL;/* unused */
Arguments.ControlBlock = (void *) CtrlBlock;/* the search block */
i = ExpgReadDataFile (stream, (int *) Arguments, &ErrorValue);

Element Used for Values

ConvertType Output Data Type Returned type of data

ConvertFlags Control Flags InquireData (AND
SearchCondition if necessary)

StartData Currently Unused

Sizes Address of array of
dimensions

an array with a value for each
dimension (see below)

Offsets Currently Unused

ControlBlock Address of a control
block to specify which
data to write or a header
number

if SearchCondition is not specified
this value may be replaced by a
header number

C Examples

26 of 51 The ESRF Data Format

if (i != RoutineSucceeded) (void) ExpgReportStatus (i, ErrorValue,
True);

Sizes = (int *) Arguments->Sizes/* Values we want */

4.5 Reading Header Information

To read header information the control structure has the fields below, Elements
2 and 3 give the result required:

4.5.1 Example

Below is a section of code to find the title of an image specified by Image = 1;

#include “esrf_data_format.h”
int i, stream, ImageNumber, *CtrlBlock[4], ErrorValue;
ArgBlk Arguments; /* define our argument block */
ImageNumber= 1; /* j records the image number */
CtrlBlock[0] = (int *) 1; /* number of search conditions */
CtrlBlock[1] = (int *) “Image”;/* keyword to search for */
CtrlBlock[2] = (int *) &ImageNumber;/* value of the image number */
CtrlBlock[3] = (int *) IntegerValue;/* its type for the compare rou-

tine */
Arguments.ConvertType = NoSpecificValue;/* the data type returned

here */
Arguments.ConvertFlags = ReadHeader & SearchCondition;
Arguments.StartData = (void *) “title” ;/* keyword */
Arguments.Sizes = (void *) NULL;/* value returned here */
Arguments.Offsets = (void *) StringValue;/* type*/
Arguments.ControlBlock = (void *) CtrlBlock;/* the search block */
i = ExpgReadDataFile (stream, (int *) Arguments, &ErrorValue);
if (i != RoutineSucceeded) (void) ExpgReportStatus (i, ErrorValue,

True);

Element Used for Values

ConvertType Currently Unused

ConvertType Control Flags ReadHeader (AND
SearchCondition if necessary)

StartData Address of Keyword pointer to the Keyword

Sizes Address of value returned pointer to its value

Offsets Count returned count of number of match-
ing headers

ControlBlock Address of a control
block to specify which
data to write or a header
number

if SearchCondition is not specified
this value may be replaced by a
header number

The Fortran Interface

The ESRF Data Format 27 of 51

5.0 The Fortran Interface

5.1 Introduction

Warning: the Fortran interface does not have access to the AllocateSpace
option in the Control Block because Fortran 77 does not have dynamic memory
allocation. It is the user’s responsibility to ensure that data returned by the rou-
tines (including strings) is placed in a suitably dimensioned array - failure to
reserve sufficient space will cause the program to generate memory overflow
errors and the program will crash.

The Fortran interface is under development and uses an INCLUDE file called
esrf_data_format.inc. This file defines various values that can be used for a
replacement of symbolic names. It also defines the functions below. Each rou-
tine has two names; the long, more descriptive name and (for those who insist
on absolute Fortran 77) a shorter name, conforming to the Fortran 77 rules
under the sub-heading ALTERNATIVE; this may be important for compilers who
will not allow long names or for those machines where name space conflicts
may occur - see the note for HP users below.

Note for those who need to compile the library: if you wish to install the For-
tran interface when you compile the library it uses a package called cfortran.h
written by Burkhard Burrow - this is not part of the software and users will have
to obtain the package by anonymous ftp from zebra.desy.de (internet number:
131.169.2.244). Installation of this package is straightforward and should use
the ANSI C implementation.

Note also that since strings may be merged into the data section (at the discre-
tion of the compiler) users should explicitly terminate their strings with a null
character i.e. use MYSTRING//CHAR(0) to ensure the C routines underneath
correctly obtain the length of the string.

HP users: In the interface itself the long name has been compiled with the +ppu
option and requires that the user also compiles his program with this option. If
this causes a problem (e.g. calling other libraries may generated undefined
symbol errors from the loader) then use the shorter name that has not been
compiled with this problem

In the Fortran interface a six element integer array provides a structure to pass
various arguments to the routines. Some examples are given with the routines
others follow in the next section.

5.2 INTEGER FUNCTION ExpgOpenDataFile (Filename, DataErrorValue)

ALTERNATIVE: INTEGER FUNCTION EXPODF (Filename, DataErrorValue)
INPUT: CHARACTER *(*) Filename
OUTPUT: INTEGER DataErrorValue
INOUT: None
FUNCTION: open the Data File

The Fortran Interface

28 of 51 The ESRF Data Format

This routine will open up the appropriate file and return a channel number (an
integer provided by the calls- this stream number should not be confused with a
Fortran Unit number and it is not interchangeable with it.).

In the event of a failure the channel number will be the value of the Symbolic
name RoutineFailed.

The Filename is first checked as an environment variable; otherwise it is taken
as a literal pathname. This allows the user to specify whatever filename he
chooses outside the program, if he so wishes. For example, the call:

include ’esrf_data_format.inc’
integer stream, ErrorValue;
stream = ExpgOpenDataFIle (’IMAGE’, ErrorValue)

will look for an environment variable IMAGE1 and use it’s value. If this does not
exist then the file opened will be IMAGE1. In the ExpgOpenDataFile routine the
opening of the file causes all the headers to be read and kept in a private data
structure in memory. The maximum number of streams that can be open at any
time is (arbitrarily) the symbolic name MaxFiles. In all the following calls int
Stream refers to the value returned by these calls.

The routine will also use a simple test for an ESRF Data Format File in that the
first non-blank element must be an open curly bracket - if it finds anything else it
will assume the file is not in the ESRF format and return with DataErrorValue set
to the appropriate error number.

5.3 INTEGER FUNCTION ExpgCloseDataFile (Stream, DataErrorValue)

ALTERNATIVE: INTEGER FUNCTION EXPCDF (Stream, DataErrorValue)
INPUT: INTEGER Stream
OUTPUT: INTEGER DataErrorValue
INOUT: None
FUNCTION: close the Data File

This routine will close the appropriate file and free the channel for other calls. All
the data structures created by a call to ExpgOpenDataFile with this stream
number are freed.

In the event of failure, the user should check the possible reasons for this in his
code and should not use the freed channel number again since this may lead to
corruption of the file(s).

Note: if the file has been updated or has had new information written to it then
this call must be used to ensure the buffers are flushed to it because this call
searches the internal tables to find headers that have not been written to the file
and writes them out. If you only read from a file then this call is not explicitly
needed but it is good practice to include a close with each open statement you
use.

The Fortran Interface

The ESRF Data Format 29 of 51

5.4 INTEGER FUNCTION ExpgReadDataFile (Stream, Structure,
DataErrorValue)

ALTERNATIVE: INTEGER FUNCTION EXPRDF (Stream, Structure, DataEr-
rorValue)
INPUT: INTEGER Stream
OUTPUT: INTEGER *DataErrorValue
INOUT: INTEGER Structure[6]
FUNCTION: performs various read operations on the data.

The Structure (defined in the introduction above) is used to pass parameters in
and out of the routine. See the examples in the next section.

If you open a data file and only make read operations on it then you do not need
to explicitly call ExpgCloseDataFile, since the file itself will not have changed.

5.4.1 Example

To fill in this Structure to Read a title from the data block referenced by Image =
1; the user would write the following code. Note that we use a search condition
to find the data:

*
INCLUDE 'esrf_data_format.inc'

*
INTEGER ISTREAM, IRETERR, IRDERR, INUM, IBLOCK(6), ICOND(40)
CHARACTER*80 KEYWRD(8), MESG*200

*
INUM = 1
KEYWRD(1) = 'Image' // CHAR(0)
KEYWRD(2) = 'Title' // CHAR(0)

*
* Set up Search Condition
*

ICOND(1) = 1
ICOND(2) = EXPLOC (KEYWRD(1))
ICOND(3) = EXPLOC (INUM)
ICOND(4) = IntegerValue

*
* Set up control structure
*

IBLOCK(1) = 0
IBLOCK(2) = ReadHeader .AND. SearchCondition
IBLOCK(3) = EXPLOC (KEYWRD(2))
IBLOCK(4) = EXPLOC (MESG)
IBLOCK(5) = StringValue
IBLOCK(6) = EXPLOC (ICOND)

*
* Perform the operation
*

IRETERR = EXPRDF (ISTREAM, IBLOCK, IRDERR)
IF (IRETERR .NE. RoutineSucceeded) THEN
 MESG = EXPREP (IRETERR, IRDERR, .TRUE.)
ELSE
 PRINT *, KEYWRD(3), MESG
ENDIF

*

The Fortran Interface

30 of 51 The ESRF Data Format

5.5 INTEGER FUNCTION ExpgWriteDataFile (Stream, Structure,
DataErrorValue)

ALTERNATIVE: INTEGER FUNCTION EXPWDF (Stream, Structure, DataEr-
rorValue)
INPUT: INTEGER Stream
OUTPUT: INTEGER *DataErrorValue
INOUT: INTEGER Structure[6]
FUNCTION: performs various write operations on the file.

Writing data to the file always causes the data to be written immediately since
the libraries have no way of knowing how long this data may exist.

Writing header information does not always cause an explicit write to the file
(they will be cached in memory) to improve performance and help prevent frag-
mentation of the file. This header information will only be written either by using
the FlushTable command or by closing the file.

If you write header information to the data file, or add new header information
then you must explicitly call ExpgCloseDataFile to flush the internal tables - fail-
ure to do so will mean that the new information is not reflected in the file.

5.5.1 Example

To fill in this Structure to Write an image (with value identified by an integer), the
user would write the following code. Note that we use a search condition to find
where to write the data, we also assume a stream is already open and the data
exists:

*
INCLUDE 'esrf_data_format.inc'

*
INTEGER ISTREAM, IRETERR, IRDERR, INUM, IBLOCK(6), ICOND(40),

SIZES(3)
INTEGER*2 IDATA(2000000)
CHARACTER*80 KEYWRD(8), MESG*200

*
INUM = 1
KEYWRD(1) = 'Image' // CHAR(0)

*
* Set up the sizes of the data
*

SIZES(1) = 2
SIZES(2) = 512
SIZES(3) = 256

*
* Set up Search Condition
*

ICOND(1) = 1
ICOND(2) = EXPLOC (KEYWRD(1))
ICOND(3) = EXPLOC (INUM)
ICOND(4) = IntegerValue

*
* Set up control structure
*

The Fortran Interface

The ESRF Data Format 31 of 51

IBLOCK(1) = UnsignedShort
IBLOCK(2) = WriteData.AND. SearchCondition
IBLOCK(3) = EXPLOC (IDATA(1))
IBLOCK(4) = EXPLOC (SIZES(1))
IBLOCK(5) = 0
IBLOCK(6) = EXPLOC (ICOND)

*
* Perform the operation
*

IRETERR = EXPWDF (ISTREAM, IBLOCK, IRDERR)
IF (IRETERR .NE. RoutineSucceeded) THEN

MESG = EXPREP (IRETERR, IRDERR, .TRUE.)
PRINT *, MESG

ENDIF
*

5.6 CHARACTER*(*) FUNCTION ExpgDataFormatVersion ()

ALTERNATIVE: CHARACTER*(*) FUNCTION EXPDFV ()
INPUT: None
OUTPUT: None
INOUT: None
FUNCTION: returns a string value for the current version of the software.

5.7 SUBROUTINE ExpgCatchInterrupt (Flag)

ALTERNATIVE: SUBROUTINE EXPCI ()
INPUT: INTEGER Flag
OUTPUT: None
INOUT: None
FUNCTION: Toggles the interrupt catch facility on or off. If the Flag is True
then the signal SIGINT (usually ^C) is caught and all files are closed before any
other action. If the Flag is False then the old signal handler (which may be no
action) is re-established and no flushing of headers is performed. The default
start-up action is OFF.

5.8 CHARACTER*(*) FUNCTION ExpgReportStatus (ErrorValue,
DataErrorValue, Flag)

ALTERNATIVE: CHARACTER*(*) FUNCTION EXPREP (ErrorValue, DataEr-
rorValue, DisplayFlag)
INPUT: INTEGER ErrorValue

INTEGER DataErrorValue
INTEGER Flag

OUTPUT: None
INOUT: None
FUNCTION: give a report on the error that occurred.

give a report on the error that occurred. The return value is a string with the
appropriate message. The value ErrorValue is the return value of the routine
(generally RoutineFailed), DataErrorValue is the returned error code from the
routine that the user wishes to report on and Flag is set to .TRUE. if the user

The Fortran Interface

32 of 51 The ESRF Data Format

wishes the routine to output a message or .FALSE. if the user does not want the
routine to output a message. A typical piece of code may look like:

include ’esrf_data_format.inc’
integer ErrorValue, DataErrorValue
character*200 mesg
ErrorValue = ExpgOpenDataFile (’myfile”, DataErrorvalue)
if (ErrorValue .ne. RoutineSucceeded mesg = ExpgReportStatus (Error-

Value, DataErrorValue, .True.)

5.9 INTEGER FUNCTION ExpgDisplayHeaders (Stream, DataErrorValue)

ALTERNATIVE: INTEGER FUNCTION EXPHDR (Stream, DataErrorValue)
INPUT: INTEGER Stream
OUTPUT: INTEGER DataErrorValue
INOUT: None
FUNCTION: this routine the will display all the headers currently in mem-
ory to the standard output device.

5.10 LOGICAL FUNCTION ExpgGetByteOrder ()

ALTERNATIVE: LOGICAL FUNCTION EXPGBO ()
INPUT: None
OUTPUT: None
INOUT: None
FUNCTION: determine ‘endedness’ of your machine

A support routine to determine the byte order of your machine. Return Values
are HighByteFirst (True) or LowByteFirst (False).

This routine describes the way in which integers are stored in the data (either
1234 or 4321).

5.11 INTEGER FUNCTION ExpgLocation (ILOC)

ALTERNATIVE: INTEGER FUNCTION EXPLOC (ILOC)
INPUT: INTEGER LOC
OUTPUT: None
INOUT: None
FUNCTION: return an integer address for a variable

This function returns an integer value that is the address of it’s argument. It per-
forms the same function as %LOC () in VAX Fortran. It is used to assign the
Control Block to the appropriate element of the Structure argument.

Fortran Examples

The ESRF Data Format 33 of 51

6.0 Fortran Examples

6.1 Writing Data

A simple program fragment to read an image in a file:

*
 INCLUDE 'esrf_data_format.inc'

*
 INTEGER IVALUE, IRETURN, IRESULT, INUM, II,
+ IBLOCK(6), ICOND(40), ISIZE(10)
 CHARACTER*80 KEYWRD, MESG*200, FNAME
 INTEGER*2 IDATA(2000000)

*
 INUM = 1
 KEYWRD = 'Image' // CHAR(0)
*
* Set up Search Condition
*

 ICOND(1) = 1
 ICOND(2) = EXPLOC (KEYWRD)
 ICOND(3) = EXPLOC (INUM)
 ICOND(4) = IntegerValue

*
* Read the data back as SignedShorts
*

 IBLOCK(1) = SignedShort
 IBLOCK(2) = WriteData .AND. SearchCondition
 IBLOCK(3) = EXPLOC (IDATA)
 IBLOCK(4) = EXPLOC (ISIZE)
 IBLOCK(5) = 0
 IBLOCK(6) = EXPLOC (ICOND)

*
 IRETURN = EXPWDF (IVALUE, IBLOCK, IRESULT)
 IF (IRETURN .NE. RoutineSucceeded) THEN
 MESG = EXPREP (IRETURN, IRESULT, .TRUE.)
 PRINT *, MESG
 ENDIF

*

6.2 Writing Headers

A simple program fragment to read a title from an image in a file:

*
 INCLUDE 'esrf_data_format.inc'

*
 INTEGER IVALUE, IRETURN, IRESULT, INUM, II,
+ IBLOCK(6), ICOND(40), ISIZE(10)
 CHARACTER*80 KEYWRD, MESG*200, FNAME
 INTEGER*2 IDATA(2000000)

*
 INUM = 1
 KEYWRD = 'Image' // CHAR(0)
 FNAME = ‘Title’//CHAR(0)
 MESG = ‘This is an example Title’//CHAR(0)

*

Fortran Examples

34 of 51 The ESRF Data Format

* Set up Search Condition
*

 ICOND(1) = 1
 ICOND(2) = EXPLOC (KEYWRD)
 ICOND(3) = EXPLOC (INUM)
 ICOND(4) = IntegerValue

*
* Read the data back as SignedShorts
*

 IBLOCK(1) = NoSpecificValue
 IBLOCK(2) = WriteHeader .AND. SearchCondition
 IBLOCK(3) = EXPLOC (FNAME)
 IBLOCK(4) = EXPLOC (MESG)
 IBLOCK(5) = StringValue
 IBLOCK(6) = EXPLOC (ICOND)

*
 IRETURN = EXPRDF (IVALUE, IBLOCK, IRESULT)
 IF (IRETURN .NE. RoutineSucceeded) THEN
 MESG = EXPREP (IRETURN, IRESULT, .TRUE.)
 PRINT *, MESG
 ENDIF

*

6.3 Inquiring About Data

A simple program fragment to find the size and data type of an image in a file:

*
 INCLUDE 'esrf_data_format.inc'

*
 INTEGER IVALUE, IRETURN, IRESULT, INUM, II,
+ IBLOCK(6), ICOND(40), ISIZE(10)
 CHARACTER*80 KEYWRD(8), MESG*200

*
 INUM = 1
 KEYWRD(1) = 'Image' // CHAR(0)

*
* Set up the search condition
*

 ICOND(1) = 1
 ICOND(2) = ExpgLocation (KEYWRD(1))
 ICOND(3) = ExpgLocation (INUM)
 ICOND(4) = IntegerValue

*
* Set up the control structure
*

 IBLOCK(1) = 0
 IBLOCK(2) = InquireData .AND. SearchCondition
 IBLOCK(3) = 0
 IBLOCK(4) = ExpgLocation (ISIZE)
 IBLOCK(5) = 0
 IBLOCK(6) = ExpgLocation (ICOND)

*
 IRETURN = ExpgReadDataFile (IVALUE, IBLOCK, IRESULT)
 IF (IRETURN .NE. RoutineSucceeded) THEN
 MESG = ExpgReportStatus (IRETURN, IRESULT, .TRUE.)
 ELSE
 PRINT *, 'Data Type ', IBLOCK(1)
 PRINT *, 'Dimensions ', ISIZE(1)

Fortran Examples

The ESRF Data Format 35 of 51

 DO 100 II = 2, ISIZE(1) + 1
 PRINT *, 'Dim ', ISIZE(II)

 100 CONTINUE
 PRINT *, 'Total Size ', ISIZE(ISIZE(1) + 2)
 ENDIF

*

6.4 Reading Data

A simple program fragment to read an image in a file:

*
 INCLUDE 'esrf_data_format.inc'

*
 INTEGER IVALUE, IRETURN, IRESULT, INUM, II,
+ IBLOCK(6), ICOND(40), ISIZE(10)
 CHARACTER*80 KEYWRD, MESG*200, FNAME
 INTEGER*2 IDATA(2000000)

*
 INUM = 1
 KEYWRD = 'Image' // CHAR(0)
*
* Set up Search Condition
*

 ICOND(1) = 1
 ICOND(2) = EXPLOC (KEYWRD)
 ICOND(3) = EXPLOC (INUM)
 ICOND(4) = IntegerValue

*
* Read the data back as SignedShorts
*

 IBLOCK(1) = SignedShort
 IBLOCK(2) = ReadData .AND. SearchCondition
 IBLOCK(3) = EXPLOC (IDATA)
 IBLOCK(4) = EXPLOC (ISIZE)
 IBLOCK(5) = 0
 IBLOCK(6) = EXPLOC (ICOND)

*
 IRETURN = EXPRDF (IVALUE, IBLOCK, IRESULT)
 IF (IRETURN .NE. RoutineSucceeded) THEN
 MESG = EXPREP (IRETURN, IRESULT, .TRUE.)
 PRINT *, MESG
 ENDIF

*

6.5 Reading Headers

A simple program fragment to read a title from an image in a file:

*
 INCLUDE 'esrf_data_format.inc'

*
 INTEGER IVALUE, IRETURN, IRESULT, INUM, II,
+ IBLOCK(6), ICOND(40), ISIZE(10)
 CHARACTER*80 KEYWRD, MESG*200, FNAME
 INTEGER*2 IDATA(2000000)

*
 INUM = 1

Fortran Examples

36 of 51 The ESRF Data Format

 KEYWRD = 'Image' // CHAR(0)
 FNAME = ‘Title’

*
* Set up Search Condition
*

 ICOND(1) = 1
 ICOND(2) = EXPLOC (KEYWRD)
 ICOND(3) = EXPLOC (INUM)
 ICOND(4) = IntegerValue

*
* Read the data back as SignedShorts
*

 IBLOCK(1) = NoSpecificValue
 IBLOCK(2) = ReadHeader .AND. SearchCondition
 IBLOCK(3) = EXPLOC (FNAME)
 IBLOCK(4) = EXPLOC (MESG)
 IBLOCK(5) = StringValue
 IBLOCK(6) = EXPLOC (ICOND)

*
 IRETURN = EXPRDF (IVALUE, IBLOCK, IRESULT)
 IF (IRETURN .NE. RoutineSucceeded) THEN
 MESG = EXPREP (IRETURN, IRESULT, .TRUE.)
 ENDIF
 PRINT *, MESG

*

System Limits

The ESRF Data Format 37 of 51

7.0 System Limits

The following define statements are used in the header file esrf_data_format.h
to specify limits and header syntax:

#define MaxFiles 20

The maximum number of files that can be open at any one time. It’s value is
purely arbitrary and can be changed by the installer of the library.

#define MaxKeyLen 64

The significant length of a keyword. Keywords can be of any length but only the
first MaxKeyLen characters are recognised as distinct. Can be changed by the
installer of the library.

#define BufferSize 512

The size of the input buffer. The files are parsed by reading blocks of this size
and then parsing through them in memory. This should allow the file opening to
be quick and can be matched to the block size of your disks.

#define HeaderStart 1

Header numbers will begin at this value. Negative header numbers are not
allowed, neither is a header number of zero.

#define MaximumMatch 2048

The maximum number of matches that can be made on a file of data. This has
serious implications and this limit may be removed in future releases. It is arbi-
trarily set - this means that a search for the keyword Image (to determine the
number of images in a file) cannot be greater then this define i.e. you can’t have
more than MaximumMatch images in a file.

#define MaxDimensions BufferSize

The maximum number of dimensions for a block of data. It arbitrarily uses the
value of BufferSize but since this value is unlikely to change (or if it does it will
be increased) the limit s not really important.

System Limits

38 of 51 The ESRF Data Format

Error Codes and Messages

The ESRF Data Format 39 of 51

8.0 Error Codes and Messages

8.1 Error Messages

The following is a list of retruned values from the calls and a fuller description of
each message.

RoutineSucceeded

is the return value of a call that has performed it’s function correctly. This value
is guaranteed to be zero all other error values are non-zero.

RoutineFailed

the routine could not perform it’s function correctly and the last argument to the
call will contain one of the error values listed below.

CouldNotMallocMemory

the malloc system call failed. This is a serious error and the program should not
continue.

CouldNotFreeHeaders

when closing the file, the system failed to free the header tables it had created.
This is not a serious error but the user should beware that this channel number
should not be re-used if at all possible.

NoMoreStreamsAvailable

the maximum number of files are open. Close some files or abandon the pro-
gram.

CouldNotOpenFile

An error occurred with the fopen system call. This may be caused by the user
having incorrect permissions on a file that exists or no write permission to the
directory where a new file is created.

EndOfFileDetected

There was an unexpected end of file found during the opening and parsing of
the file. The program should not continue

CouldNotFindHeader

A warning that the file does not contain any headers

Error Codes and Messages

40 of 51 The ESRF Data Format

BadSizeDefinition

An error with writing data, the system found a size that was negative.

BadDataBlock

An error occurred during a fread/fwrite call that produced a mismatch between
the number of items to read/write and the actual number.

CouldNotFindKeyword

This is not an error but a warning that the system failed to find your given key-
word.

NotESRFDataFile

The file does not start with a ‘{‘ as it’s first non-blank character so it’s unlikely to
be an ESRF Data File.

An interface to xv

The ESRF Data Format 41 of 51

9.0 An interface to xv
9.1 Introduction

Xv is written by John Bradley (e-mail: bradley@cis.upenn.edu) and is described
by him as an “interactive image display for the X Window System”. The current
version has a license fee of $25. An unregistered copy can be obtained from the
server ftp.upenn.cis.edu (IP Number 130.91.6.8) as the file pub/xv/xv-
3.00a.tar.Z.

It is quite a useful tool for looking at a variety of image formats (GIF, TIFF,
JPEG, etc. even PostScript documents!) and has been modified by the author
of the ESRF Data Format to read our format as well. The patches will shortly be
made available on our ftp server expga.esrf.fr. However, it is not recommended
that it be used to write ESRF Data Format files (although this is possible) since
Xv itself can only use (internally) 8- and 24-bit image data so some loss of reso-
lution may occur.

For example the image below was generated by reading and ESRF Data For-
mat File and converting it to TIFF for input to FrameMaker (the desktop publish-
ing system used to create this documentation)

Appendices

42 of 51 The ESRF Data Format

Appendix A Obtaining the Software

The library source files, header files and some example programs are available
for the following machines from the file server expga.esrf.fr (Internet number
160.103.2.141) as follows:

~ftp/src/esrf_data_format.tar.Z - source code, header files and Makefiles

~ftp/src/esrf_examples.tar.Z - example test files; these are rather large so have been
split from the main source

If you need to compile the Fortran interface, you will also need a package called
cfortran.h obtainable from the ftp site is zebra.desy.de (131.169.2.244)

Appendices

43 of 51 The ESRF Data Format

Appendix B Common Keywords

In order to standardise on keyword names as far as possible the following is a
list of pre-defined keywords that should be used for their said purpose:

Keyword Properties and/or use

HeaderID provides a header number and other information (parent
header, next header) to link headers together. This key-
word is COMPULSORY for every header,

VersionNumber a string value indicating the version of the software that
wrote the file,

ByteOrder symbolic values HighByteFirst or LowByteFirst, used to
describe the ‘endedness’ of integers and IEEE floating
point numbers,

DataType symbolic values UnsignedByte, SignedByte (both 8 bit),
UnsignedShort, SignedShort (both 16 bit),
UnsignedInteger, SignedInteger (both 32 bit), Real (32
bit IEEE or 32-bit VMS), DoubleValue (64 bit IEEE or
64-bit VMS). See the section on pre-defined types,

RealFormat specify the format of floating point numbers. Can be set to
VMS, IEEE or ConvexReal (the default is IEEE if omit-
ted),

Size Size of the Data Section following this header - may be
omitted for Size = 0,

Dim_1,Dim_2,Dim_3,
etc.

the size of each dimension of the data actually stored. The
maximum number of dimensions is set in the header file
define MaxDimensions (currently 512) and follow the C
language ordering,

Compression symbolic names NoSpecificValue (no compression),
DiffDataCompress, JPEG, JPEG-Lossy (for JPEG
lossy compression), RunLengthEncoded and other tech-
niques as they are implemented,

Date the date the file was written, any format common DD/MM/
YY, MM/DD/YY, DD-MON-YY, etc.

Time the time the file was written, any common format hh:mm
zone e.g. 23:40 CET,

Image an integer to specify a particular image e.g. Image = 1;

Appendices

44 of 51 The ESRF Data Format

The following subsidiary keywords are used to describe the properties of vari-
ous image types. The main ones deal with the description of Image Plates and
Film detectors.

ImageType a symbolic name to describe the Image type. Current val-
ues are: 8bit (8 bit greyscale or colour palette images),
24bit (true colour images), RawData (used to describe
raw diffraction data). Note that using RawData does not
imply any size of pixel element - that is the purpose of the
DataType keyword,

DetectorName a string to identify the detector type used, the current val-
ues are NoSpecificValue (for a detector that is not yet
known), Film (for photographic film), MAR (MAR
Research Image Plate), RAXIS (Image Plate), MOLD
(Molecular Dynamics Image Plate), FUJI (Image Plate),
each of these known detectors will, in general, have sev-
eral other keywords defined that describe the properties of
the detector - see the list later,

Title a title for the header,

SampleName a string to identify the sample used,

ProposalNumber value assigned by ESRF from original beam time applica-
tion

Subsidiary Keyword for Image Plates and Film Detectors

Subsidiary Keyword Properties and/or use

DataLowLimit the lower limit for a valid pixel reading,

DataHighLimit the upper limit for a valid pixel reading,

BadPixelMarker offset used to mark a data point as invalid. the pixel value
+ BadPixelMarker makes this pixel an invalid data item,

ZeroOffset number to subtract from standard formula to compensate
for the zero offset of the detector,

CorrectionFunction symbolic name for the different types of nonlinearity cor-
rections to apply to the raw data; values are: Polynomial
(1 byte), Linear (2 byte), ExponentialWord (2 byte),
ExponentialByte (1 byte) and PieceWiseLinear (2 byte,
RAXIS),

HeaderSize the size of the header in the raw output from the detector,

ScaleFactor scale factor to apply to the data; typically 1 but not for
RAXIS,

Appendices

45 of 51 The ESRF Data Format

Log10Scale for Linear CorrectionFunctions this is zero; otherwise it
is the constant in the exponent for Exponential Correc-
tionFunctions,

PadParameters two integer values, the number of records and the number
of bytes respectively; some detectors require a skip of n
bytes every m records, for example a FUJI BA100
requires an 8 byte skip every 4 records and is described as
PadParameters = 4 8; a FUJI BA101 requires a 2 byte
skip every 4 records and is described as PadParameters
= 4 2;

FilmType describes different types of film; currently NoSpeci-
ficValue, Film2 or Film4. This will change the way vari-
ous corrections are applied

Subsidiary Keyword for Image Plates and Film Detectors

Appendices

46 of 51 The ESRF Data Format

Appendices

47 of 51 The ESRF Data Format

Appendix C Future Plans and Updates

In coming versions of the software several improvements are planned (although
there is no definite release date for these improvements):

1. A RecordDescriptor keyword that will provide a record based view of the data. In
this the user will be able to describe tabular data with a statement like:

RecordDescriptor = IntegerValue[3] StringValue[80] RealValue;

to describe a line of the data as 2 integer values then an 80 character string followed
by a real number.

2. A SQL-like parser may be provided so that a user may specify something like:

SELECT DataValues FROM StreamNumber = 1 WHERE Image = 1;
or
SELECT Header Title as StringValue FROM StreamNumber = 1 WHERE Image = 1;
or
WRITE Title as StringValue TO StreamNumber = 1 WHERE Image = 1;

Appendices

48 of 51 The ESRF Data Format

Appendices

49 of 51 The ESRF Data Format

Appendix D Changes to the Library

D.1 Changes between Version 1.0 and Version 1.1 of the Library

There is a clash with some definitions in X11R4 and X11R5 so the following
have had their names changed:

Convex becomes ConvexReal
NoValue becomes NoSpecificValue

Appendices

50 of 51 The ESRF Data Format

Appendices

51 of 51 The ESRF Data Format

Appendix E Colophon

This manual was produced using the FrameMaker 4.0 Desktop Publishing
package. It is mostly set in 10pt Helvetica font, Section headings are in Helvet-
ica Bold font at 12, 10, 9 and 8pt. The examples of code are set in 8pt Courier.

Diagrams (as such) were imported as TIFF format files from various sources.

	The ESRF Data Format
	1.0 Structure and Concepts
	2.0 Compression
	3.0 The C Interface
	4.0 C Examples
	5.0 The Fortran Interface
	6.0 Fortran Examples
	7.0 System Limits
	8.0 Error Codes and Messages
	9.0 An interface to xv
	Appendix A Obtaining the Software
	Appendix B Common Keywords
	Appendix C Future Plans and Updates
	Appendix D Changes to the Library
	Appendix E Colophon

