

TANGO Device Server

CYBERSTARx1000 User's Guide

CYBERSTARx1000 Class

Revision: release_1_3_10 - Author: jean_coquet Implemented in C++ - CVS repository: tango-ds

Introduction:

This device controls the pulse processing unit (PPU) of a fast scintillation detector (SD). This PPU is called CYBERSTAR. This product come from OXFORD DANFYSIK. The device controls the 3 parts of the PPU thanks to a RS232 link. 1- the high voltage module. (Voltage applied to the photomultplier of SD) 2- the preamplifier and shaping Amplifier module.(pulses shaping) 3- the Single Channel Annalyser.(energy selector).

Class Inheritance:

- Tango::Device_4Impl
 - O CYBERSTARx1000

Properties:

Device Properties				
Property name	Property type	Description		
SerialProxyName	Tango::DEV_STRING	name of the Serial Line device Proxy		
MaxThreshold	Tango::DEV_FLOAT	Maximum voltage for upper threshold attribute		

Device Properties Default Values:

Property Name	Default Values	
SerialProxyName	No default value	
MaxThreshold	No default value	

There is no Class properties.

Attributes:

Scalar Attributes					
Attribute name	Data Type	R/W Type	Expert		
voltage : sets the voltage to apply to the detector. It essentially determines the photomultiplier amplification. For large countrates, it is necessary to operate at lower voltages since the large number of electrons that would be created could damage the photomultiplier. High Voltage	DEV_DOUBLE	READ_WRITE	No		
forcedRemoteMode: set forced remote control ON/OFF. In local mode the program stored in the miniature controller continuously polls the status of the local/remote button and checks if a force remote mode	DEV_BOOLEAN	READ_WRITE	No		
amplifierGain: adjusts the amplitude of the shaped pulses available on the signal out of the BNC socket. Usually pulse heights are between 1 and 10 V.	DEV_DOUBLE	READ_WRITE	No		
peakingTime : Elapsed time between the arrival of an X or gamma photon inside the scintillator and the peak value of the signal out pulse. It is the an Integration time. A small value of the peaking time allows high counting rate but poor energy linearity. A high value allows good energy linearity but the low counting rate	DEV_DOUBLE	READ_WRITE	No		
scaLowerThreshold : defines the lower voltage threshold which generates TTL pulses. Commonly an SCA is operated by setting an upper and lower levels. it is adjustable between 50 mV to 10 V, precision +/- 10 mV.	DEV_DOUBLE	READ_WRITE	No		
scaUpperThreshold : defines the upper voltage threshold which generates output TTL pulses. Commonly an SCA is operated by setting an upper and lower levels. it is adjustable between 50 mV to 10 V, precision +/- 10 mV.	DEV_DOUBLE	READ_WRITE	No		
windowWidth: the window width is defined as: $dV = high$ threshold - low threshold. where high threshold = window center position + $dV/2$ and high threshold = window center position - $dV/2$	DEV_DOUBLE	READ_WRITE	No		
windowCenterPosition: defines the center of the SCA voltage window	DEV_DOUBLE	READ_WRITE	No		

Commands:

More Details on commands....

Device Commands for Operator Level					
Command name	Argument In	Argument Out			
Init	DEV_VOID	DEV_VOID			
State	DEV_VOID	DEV_STATE			
Status	DEV_VOID	CONST_DEV_STRING			

1 - Init

Description: This commands re-initialise a device keeping the same network connection.
 After an Init command executed on a device, it is not necessary for client to re-connect to the device.
 This command first calls the device delete_device() method and then execute its init_device() method.

For C++ device server, all the memory allocated in the nit_device() method must be freed in the delete_device() method.

The language device descructor automatically calls the *delete_device()* method.

• Argin:

DEV_VOID: none.

• Argout:

DEV_VOID: none.

• Command allowed for:

2 - State

- **Description:** This command gets the device state (stored in its *device_state* data member) and returns it to the caller.
- Argin:

DEV_VOID: none.

• Argout:

DEV STATE: State Code

• Command allowed for:

3 - Status

- **Description:** This command gets the device status (stored in its *device_status* data member) and returns it to the caller.
- Argin:

DEV_VOID: none.

• Argout:

CONST_DEV_STRING: Status description

Command allowed for:

TANGO is an open source project hosted by : SOURCEFORGE.NET®

Core and Tools : CVS repository on tango-cs project Device Servers : CVS repository on tango-ds project