
Tango ATK Tutorial

This document is a practical guide for Tango ATK programmers and includes several trails with

examples and demonstrations.

In this document, we assume that the reader has a good knowledge of the Java programming

language, and a thorough understanding of the object-oriented design. In addition, it is expected

that the reader is fluent in all aspects regarding Tango devices, attributes, and commands.

Before going through the trails and examples, the Tango ATK architecture and key concepts

are introduced. After this introduction, the rest of the document is organized in a set of trails.

Introduction
Tango Application Toolkit also called ñATKò is a client framework for building applications

based on Java Swing in a Tango control system.

Goals of Tango ATK
The main goals of ATK are the following:

¶ Speeding up the development of Tango graphical clients.

¶ Standardizing the look and feel of Tango applications.

¶ Implementing the core of ñanyò Tango application.

To achieve the first and the second goals ATK provides several swing based components to

view and/or to interact with Tango device attributes and Tango device commands and a

complete synoptic viewing system. To achieve the third goal ATK takes in charge the automatic

update of device data either through Tango events or by polling the device attributes. ATK takes

also in charge the error handling and display. The ATK swing components are the Java Beans,

so they can easily be added to a Java IDE (like NetBeans) to speed up the development of

graphical control applications.

The Software Architecture of Tango ATK
Tango ATK is developed using the Model-View-Controller design pattern also used in the Java

Swing package. The Tango basic objects such as device attributes and device commands

provide the model for the ATK Swing based components called viewers. The models and the

viewers are regrouped in two separate packages respectively ATKCore and ATKWidget.

https://en.wikipedia.org/wiki/Model-view-controller

Important notes:

¶ ATK is based on Swing. Mixing the use of other ñnon swingò objects such as SWT

(eclipse) with ATK is not recommended.

¶ ATK hides Tango Java API (JTango). It is highly recommended not to use JTango

objects and methods (DeviceProxy, command-inout) directly in the application code.

Always use the interface provided by ATK to access the control system.

Java Swing
Tango Java API

(JTango)

Tango ATK

Application

The key concepts of Tango ATKCore (Model)

Reminder: the central Tango component is the DEVICE. The Tango control system can be seen

as a collection of devices distributed over the network. The tango devices provide attributes (for

reading and setting data) and commands to perform actions.

The ATKCore package encapsulates the Tango components and methods (Devices, command-

inout) into other objects such as : AttributeList, CommandList, Attribute, Command, éetc.

The central ATK components, to access the Tango control system, are: attributes and

commands and not the devices. Through Tango Java API (JTango) the control system is a

collection of devices where through ATK the control system is a collection of attributes and

commands.

In addition to ATK attributes and ATK commands ATK provides two other important

components, which are ATK attribute lists and ATK command lists.

Therefore, the central ATK components are:

¶ ATK Attribute (interface to Tango device attribute),

¶ ATK Command (interface to Tango Device command),

¶ ATK AttributeList (collection of ATK Attributes)

¶ ATK CommandList (collection of ATK Commands).

Tango ATKWidget (viewers)
ATK viewers are provided as Java Beans and as such they can easily be added in a Java IDE

(like NetBeans) to speed up the development of the graphical applications. This way the

programmer can easily build up his (her) panels, mixing pure Swing objects (menubars, panels)

and Tango ATK viewers.

ATK viewers are provided for different types of Tango Components. They can be divided into

different categories such as: error history window, error popup window, simple attribute

viewers / editors, attribute list viewers, simple command viewers, command list viewers, éetc

Synoptic drawing and viewing
A synoptic is a free drawing in which each object can be linked to an ATK attribute or to an

ATK command. For example, a part of the synoptic drawing can be linked to the state attribute

of a Tango device where another part is associated to a numerical attribute of another Tango

device. The main idea of the synoptic drawing and viewing system is to provide the application

designer with a simple and a flexible way to draw a synoptic and to animate it at runtime

according to the values and states read from the control system. ATK provides three

components for this purpose:

¶ A graphical editor called ñJdrawò. This tool is used during the design phase to draw and

to specify the synoptic. The synoptic is saved to an ascii file.

¶ A synoptic viewer called ñSynopticFileViewerò. This viewer is used in the graphical
user interface of the application. SynopticFileViewer loads and browses the synoptic

drawing file and animates its elements at runtime according to their state or to their

value.

¶ An already developed simple synoptic application which can be used to show and

animate the designed synoptic file without the need to develop a java application. Inside

the Jdraw graphical editor the SimpleSynopticApplication is available to be able, during

the drawing stage, to test the behavior of the synoptic at run time once connected to the

control system.

Using ATK inside a Java IDE (NetBeans)
Several Java IDEs (Integrated Design Environments) are available on the market and also as

freeware. You can search the Internet to choose the most appropriate one for your usage. Here

you can find some links to start with:

NetBeans (free download)

Eclipse (free download)

Intelligent Idea (commercial tool)

The use of the Java IDEs especially those including a good graphical user interface builder

speed up the development of Tango ATK applications. From now on all the examples in this

tutorial are made using the NetBeans 12.4. The present section presents the manner in which

the ATK Java Beans can be integrated to the NetBeans Palette and used to build the user

interface of the final ATK application.

If you are using another Java IDE please refer to its documentation to find out how to integrate

and use the ATK Java Beans inside the IDE, to build a graphical user interface.

Install the software

¶ We assume that Java SE is already installed

¶ Download and install NetBeans from NetBeans Web site. H

Learning NetBeans

If you are a beginner with NetBeans we recommend you to go through the followings :

General Java Development Learning Trail

Java GUI Applications Learning Trail

Create an ATK Application project in NetBeans

To create and ATK application project, you may go through the following steps:

1. Create the NetBeans Java Application Project

2. Add the Tango and ATK jar files in the project ôs class path

3. Add several ATK Java Beans (ATK viewers) to the NetBeans palette

For the third step you should use the Palette Manager : from MenuBar, select Tools then Palette

then Swing / AWT components.

http://www.netbeans.org/
http://www.eclipse.org/
http://www.jetbrains.com/idea/
http://www.netbeans.org/
https://netbeans.apache.org/kb/docs/java-se.html
https://netbeans.apache.org/kb/docs/matisse.html

The Structure of an ATK application
Any ATK application should perform a minimum set of operations. The following lists this

minimum set of operations :

1. Declaration and initialization of ATKCore objects (AttributeLists, CommandLists,

individual ATKCore attributes and individual ATKCore commands).

2. Declaration and instantiation of ATKWidget Error viewers to handle errors. Associate

the ErrorViewers to the AttributeLists and CommandLists right at the beginning.

3. Connection to attributes by adding them to the appropriate list

4. Connection to commands by adding them to the appropriate list

5. Create swing elements (not atk) JFrame, MenuBar, PuldownMenus é

6. Creation of the specific ATK Attribute and command viewers, and add them to a swing

window

7. Associate each ATK viewer to an appropriate attribute or command

8. Start the refresher thread associated to the attribute list

The following example ñGetting Startedò is the first ATK application you can develop

following the steps described in the next section.

Getting Started

The following short tutorial takes you through some of the basic steps necessary to develop a

Tango Java application based on Tango ATK.

In this tutorial, we do not use any Java IDE features. All the java code can be entered manually

using any source editor like gedit. The NetBeans java source editor is used as any source editor.

Let us specify the application we want to build in terms of the Model-View-Controller design

pattern described before.

Our ñGetting Startedò application will need to show three attributes and one command, all

related to the same single device. The tango device name used in the Getting Started application

is ñjlp/test/1ò. The application will show the ñstateò, ñstatusò and the ñatt_spectrumò attributes

of this device and will give access to its ñInitò command.

1. The type of the ñstateò attribute (jlp/test/1/state) is ñDevStateò and its format is ñScalarò

2. The type of the ñstatusò attribute (jlp/test/1/status) is ñDevStringò and its format is

ñScalarò

3. The type of the ñatt_spectrumò attribute (jlp/test/1/att_spectrum) is ñDevDoubleò and
its format is ñSpectrumò

4. The ñInitò command (jlp/test/1/Init) has no input and no output argument (input and
output argument types are DevVoid)

The ATKCore components are used to create and initialise the ñmodelò part of the design

pattern:

¶ One attribute list

¶ Three attributes (state, status, att_spectrum)

¶ One command list

¶ One command (Init)

The ATKWidget components are used to create and initialise the ñviewò part of the design

pattern. These components are the objects adapted to the type of the tango component we want

to visualize. They are also called ñviewersò (attribute viewers, command viewers, é etc.).

¶ One State viewer (a viewer adapted to the DevState Scalar attributes)

¶ One Status viewer (a viewer adapted to the DevStatus Scalar attributes)

¶ One NumberSpectrum viewer (a viewer adapted to any numerical spectrum attribute)

¶ One VoidVoidCommand viewer (a viewer adapted to the any command with no input

and no output argument).

https://en.wikipedia.org/wiki/Model-view-controller

AttributeList attl = new AttributeList();

CommandList cmdl = new CommandList();

ErrorHistory errh = new ErrorHistory();

 // Handle attributes read and set errors

 attl.addErrorListener(errh);

 attl.addSetErrorListener(errh);

attl.addSetErrorListener(ErrorPopup.getInstance());

 // Handle Commands execution errors

cmdl.addErrorListener(errh);

cmdl.addErrorListener(ErrorPopup.getInstance());

 // Connect to attributes and commands

try {

 stateAtt = (DevStateScalar) attl.add("jlp/test/1/state");

 statusAtt = (StringScalar) attl.add("jlp/test/1/status");

 spectAtt = (NumberSpectrum) attl.add("jlp/test/1/att_spectrum");

 initCmd = (VoidVoidCommand) cmdl.add("jlp/test/1/init");

 }

 catch (ConnectionException ce) {};

Getting Started application : Initialize Model objects

(ATKCore)

stateViewer1 = new fr.esrf.tangoatk.widget.attribute.StateViewer();

statusViewer1 = new fr.esrf.tangoatk.widget.attribute.StatusViewer();

numberSpectrumViewer1 = new fr.esrf.tangoatk.widget.attribute.NumberSpectrumViewer();

initVoidVoidCommandViewer = new fr.esrf.tangoatk.widget.command.VoidVoidCommandViewer();

Getting Started application: Initialize View objects

(ATKWidget)

stateViewer1.setModel(stateAtt);

statusViewer1.setModel(statusAtt);

numberSpectrumViewer1.setModel(spectAtt);

initVoidVoidCommandViewer.setModel(initCmd);

Getting Started application: Associate "View" and ñmodelò

ATK Quick Tour

This section includes the first list of tutorials, which give you a quick tour of the Tango ATK

components by guiding you through the creation of a simple generic application very similar to

AtkPanel. During this quick tour you will learn how to view device state and status attributes,

and how to display a collection of tango scalar attributes all aligned with each other. You will

also use a viewer to display a collection of tango device commands.

Device state and device status
The state and the status of the device are two attributes of any Tango device (IDL 3 and above).

Atk provides two attribute viewers one called StateViewer and the other StatusViewer to

display them. These viewers are included in the fr.esrf.tangoatk.widget.attribute package.

The model for the StateViewer is the state attribute (DevStateScalar) and the model for the

StatusViewer is any scalar attribute of type String (StringScalarAttribute).

IDevStateScalar stateAtt = null;

IStringScalar statusAtt = null;

AttributeList attl = new AttributeList();

ErrorHistory errh = new ErrorHistory();

 // Handle state and status read errors

 attl.addErrorListener(errh);

// Connect to state and status attributes

try

{

 stateAtt = (DevStateScalar) attl.add("jlp/test/1/state");

 statusAtt = (StringScalar) attl.add("jlp/test/1/status");

 }

 catch (ConnectionException ce) {};

Initialize Model objects (ATKCore) : StateAtt and StatusAtt

StateViewer stateViewer1 = new StateViewer();

StatusViewer statusViewer1 = new.StatusViewer();

// Add them to the main window

this.add(stateViewer);

this.add(statusViewer);

Initialize View objects (ATKWidget) : StateViewer and StatusViewer

stateViewer1.setModel(stateAtt);

statusViewer1.setModel(statusAtt);

// Start refresher

attl.startRefresher();

// show on the screen

this.pack();

this.setVisible(true)

Associate "View" and ñmodelò and show the application

Display a list of scalar attributes

The ATK attribute list viewers / setters are provided to be able to display a collection of

attributes all aligned together. In fact, the ATK attribute list viewers handle only scalar

attributes. An attribute list viewerôs model is an attribute list. This means the model for this

type of viewers cannot be an individual attribute and should be an attribute list. The attribute

list viewers are all included in the fr.esrf.tangoatk.widget.attribute package.

The ATK list viewers provide the application with three major advantages:

V The first advantage is that all the single attribute viewers are aligned in a coherent

manner inside the attribute list viewer.

V The second advantage is that the application can be ñgenericò. An application program
with no knowledge of the exact names and types of the scalar attributes of a particular

device, can display all of them easily with two lines of code

V The third advantage is that the application programmer does not need to know which

type of attribute viewer is adapted to which type of tango attribute. The ATK list viewers

automatically select the adapted viewer and / or setter for each type of device attribute.

There are three classes for attribute list viewing:

ü ScalarListViewer

ü NumberScalarListViewer
ü ScalarListSetter.

The ScalarListViewer and NumberScalarListViewer are almost the same. The only difference

is that the NumberScalarList viewer will display only the scalar attributes which are numerical

where ScalarListViewer will display also StringScalar attributes, BooleanScalar and

EnumScalar attributes in addition to the numerical scalar attributes.

The attributes, members of the attribute list are displayed vertically. In each line an individual

attribute is displayed in the following manner:

1. At the left the ñlabelò property of the tango attribute

2. Next to the label the ñreadò value of the attribute is displayed according to the ñformatò

and the ñunitò properties of the tango attribute

3. In the third column the ñsetpointò of the tango attribute is displayed inside a viewer
(mostly called editor), which allows setting the attribute value.

4. The last (forth) column is used to display a pushbutton with three dots. A click on this

pushbutton pops up a window called ñSimplePropertyFrameò. In this window the user

can modify any property of the tango attribute configuration such as: label, min alarm,

max alarm, unit,..etc.

The application programmer can easily hide any three columns among four. There is always

one column, which cannot be hidden.

Á ScalarListViewer: The ñreadò value (2nd column) cannot be hidden. All the

attributes, members of the Attributelist model should be scalar attributes. All

attributes with another format (Spectrum) will be ignored.

Á NumberScalarListViewer: The ñreadò value (2nd column) cannot be hidden. All

the attributes, members of the Attributelist model should be scalar and

numerical. All attributes with another type (String) and / or format (Spectrum)

will be ignored.

Á ScalarListSetter: The setPoint editor (setter, 3rd column) cannot be hidden. All

the attributes, members of the attributeList model must be scalar and writable.

The read-only attributes members of the attributeList model are ignored

AttributeList attl = new AttributeList();

ErrorHistory errh = new ErrorHistory();

 // Handle attributes read and set errors

 attl.addErrorListener(errh);

 attl.addSetErrorListener(errh);

 attl.addSetErrorListener(ErrorPopup.getInstance());

// Connect to all attributes of the device

try

{

 attl.add("jlp/test/1/*");

}

 catch (ConnectionException ce) {};

Initialize Model object (ATKCore) : Attribute List

ScalarListViewer slv = new ScalarListViewer();

// Add it to the main window

this.add(slv);

Initialize View object (ATKWidget) : ScalarListViewer

slv.setModel(attl);

// Start refresher

attl.startRefresher();

// show on the screen

this.pack();

this.setVisible(true)

Associate "View" and ñmodelò and show the application

View a list of device commands
There is only one class provided for the command list viewing: CommandComboViewer.

This viewer is based on the Swing ñJComboBoxò.The user can select any of the commands

displayed in the list and send it to the device. The selection of an item in this list leads to the

execution of the device command.

The viewers studied above (StateViewer, StatusViewer, ScalarListViewer and

CommandComboViewer) can be used to build a generic tango device panel.

A generic tango device panel
The application we try to build in this tutorial is a generic tango device panel, which displays

all the UscalarU attributes (no spectrum attribute, no image attribute) of a device and gives access

to all commands of the same device. The application is generic because it has no knowledge of

the attribute names and command names of the device.

The device name should be passed as a parameter through the class constructor so that this

panel can be used for any Tango device.

The ATK viewers we will use for this exercise are:

1. StateViewer (fr.esrf.tangoatk.widget.attribute.StateViewer)

2. StatusViewer (fr.esrf.tangoatk.widget.attribute.StatusViewer)

3. ScalarListViewer (fr.esrf.tangoatk.widget.attribute.ScalarListViewer)

4. CommandComboViewer (fr.esrf.tangoatk.widget.command.CommandComboViewer)

The two last viewers are so-called ñlist viewersò. It means that, their corresponding model

should not be an individual attribute or an individual command. Their corresponding model

should be respectively an attribute list and a command list.

IDevStateScalar stateAtt = null;

IStringScalar statusAtt = null;

AttributeList attl = new AttributeList();

AttributeList scalarList = new AttributeList();

CommandList cmdl = new CommandList();

ErrorHistory errh = new ErrorHistory();

// Handle attributes read and set errors

 attl.addErrorListener(errh);

 attl.addSetErrorListener(errh);

 attl.addSetErrorListener(ErrorPopup.getInstance());

// Handle Commands execution errors

cmdl.addErrorListener(errh);

cmdl.addErrorListener(ErrorPopup.getInstance());

// Connect to attributes and commands

try

{

 stateAtt = (DevStateScalar) attl.add("jlp/test/1/state");

 statusAtt = (StringScalar) attl.add("jlp/test/1/status");

 attl.add("jlp/test/1/*");

 scalarList.add("jlp/test/1/*");

 cmdl.add("jlp/test/1/*");

 // remove two state and status attributes from the scalarList

 scalarList.removeElement(stateAtt);

 scalarList.removeElement(statusAtt);

 }

 catch (ConnectionException ce) {};

Initialize Model objecta (ATKCore) : AttributeList and CommandList

StateViewer statev = new StateViewer();

StatusViewer statusv = new.StatusViewer();

ScalarListViewer slv = new ScalarListViewer();

CommandComboViewer cmdv = new CommandComboViewer();

// Add all viewers to the main window

this.add(statev);

this.add(statusv);

this.add(slv);

this.add(cmdv);

Initialize all View objects (ATKWidget) : ScalarListViewer,

CommandComboViewer, StateViewer, StatusViewer

statev.setModel(stateAtt);

status.setModel(statusAtt);

slv.setModel(scalarList);

cmdv.setModel(cmdl);

// Start refresher

attl.startRefresher();

// show on the screen

this.pack();

this.setVisible(true)

Associate "View" and ñmodelò and show the application

ATK Guided Tour

In this chapter you will study the essential components of the ATK starting with the simplest

ones used to visualize individual tango attributes and / or tango commands. The final part of

this chapter is dedicated to the synoptic system provided with ATK. You can study this chapter

in any order.

Scalar attributes
A scalar attribute is a Tango attribute whose format is Scalar whatever the data type of the

attribute. In this chapter we will see how to view and / or set a single scalar attribute. We will

also see how to view a collection of scalar attributes.

One single scalar attribute

Use a generic scalar attribute viewer (used to view and / or to set)

This solution consists of using the same viewer for any type of scalar attributes (number, string,

boolean). The attributeList viewers such as ScalarListViewer can be used to view a single scalar

attribute. All you have to do is to build an attributeList in which you add only one single scalar

attribute, which is the one you want to view. Create a ScalarListViewer and set itôs model to

this attributeList with one single attribute inside. See the code sample below:

AttributeList attl = new AttributeList;

Try

{

 attl.add(ñmy/test/device/onescalarattò);

 ScalarListViewer slv = new ScalarListViewer();

 sv.setModel(attl);

}

catch ()

{

}

The use of ScalarListViewer even for an individual attribute allows that the attribute value is

displayed and formatted with itôs unit and eventually accompanied of itôs label, a value setter,

and a pushbutton to access and to edit the other attribute properties.

Moreover the ScalarListViewer automatically uses the appropriate viewer according to the type

of the attribute. For example a BooleanCheckBoxViewer is used for the Boolean attributes and

a SimpleScalarViewer is used for numerical and string attributes. For this reason the use of

scalarListViewer makes the application code to be independent of the type of the scalar attribute

to be displayed.

The ScalarListViewer is used to display the read value of the attribute and also to set the

attribute if the attribute is writable.

By hiding one or the other part of the scalarListViewer (label, setter, propertyButton) you can

adapt the display to what you really want to make available to the applicationôs user. The screen

shots below show the same scalar attribute displayed always with a ScalarListViewer. From

left to right, the propertyButton, the setter and finally the label have been hidden.

Using a specific viewer / setter adapted to the attribute type

The use of specific viewers is dependent on the type of the scalar attribute to view and or to set.

Normally a specific ATK viewer is designed either to display the read value of the attribute or

to set the setPoint value of a writable attribute. But the specific ATK viewer generally does not

do both of them. As we have seen before the list viewers (generic attribute viewers) can do both

of these two functions read / write.

The specific viewer to use depends on the data type of the attribute and the fact that we want to

use it for setting the attribute or only to display the read value. Therefore the source code also

depends on the type of the attribute and the viewer. The code sample below is given for a

NumberScalar attribute displayed by a SimpleScalarViewer. This code sample can be modified

and adapted to other attribute types and viewers or setters.

AttributeList attl = new AttributeList;

Try

{

 INumberScalar ins =(InumberScalar) attl.add(ñmy/test/device/oneNumberScalarAttò);

 SimpleScalarViewer ssv = new SimpleScalarViewer();

 slv.setModel(ins);

}

catch ()

{

}

Note that when using individual attribute viewers (instead of attribute list viewers) we need to

keep a reference to the scalar attribute (ñinsò in the code sample) and use it to set the model of

the scalar attribute viewer.

The code sample above has been adapted so that instead of viewing the read value of the

attribute we want to set the setPoint value of it.

 AttributeList attl = new AttributeList;

Try

{

 INumberScalar ins = (InumberScalar) attl.add(ñmy/test/device/oneNumberScalarAttò);

 NumberScalarWheelEditor nswe = new NumberScalarWheelEditor ();

 nswe.setModel(ins);

}

catch ()

{

}

NumberScalar attributes

By number scalar attribute we mean any Tango Attribute whose format is ñScalarò and whose

data type is one of the numerical types. No matter if itôs a DevLong, DevDouble , or whatever

numerical type.

There are several viewers, which can be used to display the ñreadò value of a Number Scalar

attribute. There are also several classes in ATK provided for setting the value of a number scalar

attribute

1. SimpleScalarViewer : can be used to display the read value of a NumberScalar or a

StringScalar attribute. The value of the NumberScalar attribute is formatted according

to the ñformatò attribute property. The attribute value is displayed followed by itôs unit

(the attribute property unit). This viewer is actually the one used by ScalarListViewer

to display the value of any Number or String scalar attribute.

2. NumberScalarViewer : can be used to display the read value of a NumberScalar. This

viewer has a different character spacing and does not display the unit.This viewer should

be used if you wish to align vertically the read value of a numberScalar attribute with

itôs setPoint value displayed with a NumberScalarWheelEditor.

3. NumberScalarProgressBar : gives a view of the attribute based on a progress bar.

4. NumberScalarWheelEditor : displays the setpoint value of a NumberScalar and the

user can use the top and bottom arrow buttons to set the NumberScalar attribute value.

The value of the NumberScalar attribute is formatted according to the ñformatò attribute

property. The unit is not displayed. This component is the default component used for

setting a NumberScalar attribute in ScalarListViewer.

5. NumberScalarComboEditor : allows to set the value of a number scalar attribute by

selecting the value in a list of predefined possible values. The possible values are

formatted according to the ñformatò attribute property and the unit property is displayed

with these values. If a list of predefined possible values are defined for the attribute the

ScalarListViewer will automatically use this component instead of the default one

(NumberScalarWheelEditor) to set the attribute.

The figure below shows the screen shots of the viewers.

The figure below shows the screen shots for the ñsetterò classes.

StringScalar attributes

By string scalar attribute we mean any Tango Attribute whose format is ñScalarò and whose

data type is DevString.

1. The SimpleScalarViewer is used to display the value of a string scalar attribute. This

viewer is the one used by ScalarListViewer to display the read value of a string scalar

attribute.

2. StringScalarEditor : displays the set value of a StringScalar and the user can type inside

the text field to set the value of the StringScalar attribute. This component is the default

component used for setting a StringScalar attribute in ScalarListViewer.

3. StringScalarComboEditor : allows to set the value of a StringScalar attribute by

selecting the value in a list of predefined possible values. If a list of predefined possible

values are defined for the attribute the ScalarListViewer will automatically use this

component instead of the default one (StringScalarEditor) to set the attribute.

The figure below shows the screen shots for the ñviewerò and ñsetterò components provided

for StringScalar attributes.

BooleanScalar attributes

By boolean scalar attribute we mean any Tango Attribute whose format is ñScalarò and whose

data type is DevBoolean.

1. BooleanScalarCheckBoxViewer is used to view and to set the value of a boolean scalar

attribute. In fact the BooleanScalarCheckBoxViewer is a mixed component. Itôs a

viewer and a setter. This component is used in ScalarListViewer to display the the read

value of the Boolean attributes.

2. SignalScalarLightViewer is used to display the read value of a Boolean Scalar attribute.

3. BooleanScalarComboEditor : this component is the default component used in

ScalarListViewer to set a boolean attribute. This component refreshes itôs view

according to the change in the ñsetpointò value of the boolean attribute.

4. SignalScalarButtonSetter : this component is a pushbutton which is used to set the

value of a boolean attribute always to the same value. The value (true or false) which is

sent to the attribute at each click on the pushbutton is defined when the component is

instantiated.

EnumScalar attributes

By Enum scalar attribute we mean any Tango Attribute whose format is ñScalarò and whose

data type is DevEnum.

Nevertheless under some conditions ATK provides the possiblity to see some numeric and

scalar attributes as enumerated attributes. The condition for mumeric scalar attributes to be

considered as enumerated scalar attributes (EnumScalar) is :

¶ The attribute data type should be DevShort.

¶ A property whose name is òEnumLabels should be defined for the attribute.

¶ Eventually (it is optionnal) another property whose name is UEnumSetExclusionU can also

be defined for the attribute

1. The SimpleEnumScalarViewer is used to display the read value of a enumerated scalar

attribute. This component is used by the ScalarListViewer to view the enumerated

attributes. The SimpleEnumScalarViewer reads the value of the attribute and displays

the ñlabelò corresponding to the read value.

2. The EnumScalarComboEditor is used to set an EnumScalar attribute. This component

is used by ScalarListViewer to set the enumerated attributes. This component displays

the setPoint value of the attribute converting it to a label inside the comboBox drop

down list.

The picture above shows at the left side a SimpleEnumScalarViewer and at the right side an

EnumScalarComboEditor both associated with the same EnumScalar attribute

DevState Scalar attributes

By DevState scalar attribute we mean any Tango attribute whose format is ñScalarò and whose

data type is DevState. The ñStateViewerò is one of the viewers used to view a DevState scalar

attribute. The state is converted to a color by the ATK state viewers. The following color ï state

correpondance is used by all the ATK viewers:

State Colour

ON, OPEN, EXTRACT Green

OFF, CLOSE, INSERT White

MOVING, RUNNING Light Blue

STANDBY Yellow

FAULT Red

INIT Beige

ALARM Orange

DISABLE Magenta

UNKNOWN Grey

As you can see in the table above the Open and Extract states are represented by the green

color. Green color represents a normal operational state. But the Close and Insert states are

represented by the white color which means abnormal operational state. In practice, in some

cases the green color should be associated to ñCloseò instead of Open, because close state is the

normal operational state of a particular device. The inversion of the colors can also be

acceptable for Extract and Insert states in some cases.

ATK allows to invert the color correspondance only for ñOpenò and ñCloseò states and for

ñExtractò and ñInsertò states.

To invert the color correspondance for ñOpenò and ñCloseò states the attribute property

OpenCloseInverted should be set to True.

To invert the color correspondance for ñExtractò and ñInsertò states the attribute property

InsertExtractInverted should be set to True.

1. StateViewer is used to view the read value of a DevState Scalar attribute. The state is

represented as a colored rectangle besides the name or the alias of the Tango Device.

ATK does not provide any component for setting a DevStateScalar attribute.

A Collection of scalar attributes

AttributeList viewers

As we have already studied them the attribute list viewers are the components which use an

attribute list as their model (not an individual attribute). They display only the scalar attributes

and ignore the non scalar attributes contained in the attribute list. They automatically choose

the appropriate viewer depending on the type of the attribute. ATK proposes 3 attribute list

viewers : NumberScalarListViewer, ScalarListViewer, ScalarListSetter. Please have a look into

the section : Display a list of scalar attributes.

A set of scalar attributes in a table (MultiScalarTableViewer)

The MultiScalarTableViewer is used to view a collection of scalar attributes inside a table. Each

attribute is associated to a cell. The MultiScalarTableViewer will select the appropriate scalar

attribute viewer according to the type of the attribute (NumberScalar, StringScalar,

BooleanScalar or EnumScalar). The viewer is used inside the corresponding cell to display the

read value of the attribute.

The user can also set the attribute value. To do so, (s)he should double click inside the cell. This

will display a set panel adapted to the type of the scalar attribute. A double click on a read-only

attribute has no effect.

If the keyboard focus is on the table, when the mouse enters a cell a tooltip will display the

precise tango name of the attribute.

A set of DevStateScalar attributes (TabbedPaneDevStateScalarViewer)

The TabbedPaneDevStateScalarViewer is used to view a collection of state attributes in the

titles of the panes of a tabbedPane. Each state attribute is added to the viewer by the call to

addDevStateScalarModel. This method needs also the index of the tab to be associated to the

state attribute. The screen shot below shows this viewer :

Trend of Scalar attributes

The trend of number scalar attributes

The ATK component Trend allows the user to follow the evolution of the value of one or more

number scalar attributes during the time. Trend accepts an attribute list as model. The number

scalar members of the attributeList can be plotted inside a chart during the time. Each

NumberScalar attribute included in the attribute list will be read at the frequency of the refresh

period and displayed as a separated plot.

The trend of boolean scalar attributes

The ATK component BooleanTrend allows the user to follow the evolution of the value of one

or more boolean scalar attributes during the time. BooleanTrend accepts an attribute list as

model. The boolean scalar members of the attributeList can be plotted inside a chart during the

time. Each BooleanScalar attribute included in the attribute list will be read at the frequency of

the refresh period and displayed as a separated plot.

Spectrum attributes
A spectrum attribute is a Tango attribute whose format is Spectrum (one dimensional array)

whatever the data type of the attribute. In this chapter we will see how to view and / or to set a

single spectrum attribute. We will also see how to view a collection of spectrum attributes.

One single spectrum attribute

NumberSpectrum attributes

By number spectrum attribute we mean any Tango Attribute whose format is ñSpectrumò and

whose data type is one of the numerical types. No matter if itôs a DevLong, DevDouble , or

whatever numerical type.

The NumberSpectrumViewer is used to display the read value of a number spectrum attribute.

This viewer displays the spectrum attribute as a plot in a chart. The user can display the values

inside the spectrum in a table using the mouse right button menus. You can use this viewer

following the code sample below:

AttributeList attl = new AttributeList;

Try

{

 INumberSpectrum spect = (InumberSpectrum) attl.add(ñmy/test/device/onespectrumattò);

 NumberSpectrumViewer nsv = new NumberSpectrumViewer ();

 nsv.setModel(spect);

}

catch ()

{

}

The following screen shot shows a numberSpectrumViewer. Note that the table on the right,

has been displayed using the chart menus under the right mouse button.

ATK does not provide any component for setting a NumberSpectrum attribute.

StringSpectrum attributes

By string spectrum attribute we mean any Tango Attribute whose format is ñSpectrumò and

whose data type is DevString.

The SimpleStringSpectrumViewer is used to display the value of a StringSpectrum attribute.

The SimpleStringSpectrumViewer displays the spectrum attribute as a scrolled text. Each

string element of the spectrum is displayed in a new line. The code sample is very similar to the

one given in the previous section for the use of NumberSpectrumViewer. You just need to

replace NumberSpectrumViewer by SimpleStringSpectrumViewer and replace

INumberSpectrum by IStringSpectrum.

DevStateSpectrum attributes

By DevState spectrum attribute we mean any Tango Attribute whose format is ñSpectrumò and

whose data type is DevState.

The DevStateSpectrumViewer is used to display the value of a DevState Spectrum attribute.

This viewer displays the elements of the state spectrum attribute vertically. Each elements is

displayed in a line with three different areas: in the left a text label is displayed with the name

of the attribute and the index of the element in the spectrum, in the middle a colored rectangle

displays the state value and in the right side a text label displays the state value converted to a

string.

The label displayed on the left side of each element can be customized. By default this lable is

the attribute name + [+ index +]. To define another label for the spectrum elements the tango

attribute property StateLabels should be defined. In the example above, this attribute property

has been defined using JIVE :

A collection of Spectrum attributes

A set of NumberSpectrum attributes in one single chart

The MultiNumberSpectrumViewer is used to view a collection of number spectrum attributes

inside a chart. Each number spectrum attribute is displayed as an individual plot. All plots are

displayed inside the same.

The following code example uses the MultiNumberSpectrumViewer to view 2

NumberSpectrum attributes: "jlp/test/1/att_spectrum", "jlp/test/2/att_spectrumò.

 INumberSpectrum ins;

AttributeList attl = new AttributeList();

MultiNumberSpectrumViewer mnsv = new MultiNumberSpectrumViewer();

Try{

 ins = (INumberSpectrum) attl.add("jlp/test/1/att_spectrum");

 mnsv.addNumberSpectrumModel(ins);

 ins = (INumberSpectrum) attl.add("jlp/test/2/att_spectrum");

 mnsv.addNumberSpectrumModel(ins);

é. You can continue adding other spectrum attributes

}catch (Exception ex)

 {

 System.out.println("Cannot connect device");

 ex.printStackTrace();

 }

The following screen shot shows the result of the execution of this code example:

As you can see, this viewer associates each attribute plot to a colour in the order the attributes

have been added by the call to ñaddNumberSpectrumModelò method. The user has the

possibility to change the visual aspects (colour, line width, affine transform, marker, éetc.) of

each plot.

Trend of Spectrum attributes

The trend of number spectrum attributes

There are two ATK viewers which allow the user to follow the evolution of the values of the

array elements of a NumberSpectrum attribute.

1. NumberSpectrumTrendViewer

2. NumberSpectrumItemTrend

The first component (NumberSpectrumTrendViewer) will display and follows the evolution of

ALL elements of the spectrum.

The second component (NumberSpectrumItemTrend) is more flexible. It can display the trend

of all elements of the spectrum as the first one does. But you can also specify which elements

(items) of the spectrum you want to see in the trend.

The following code sample illustrates the use of the NumberSpectrumItemTrend.

 NumberSpectrumItemTrend nsit = new NumberSpectrumItemTrend();

 try

 {

 ins = (INumberSpectrum) attList.add("fp/test/1/wave");

 nsit.setPlotAll(false);

 nsit.setModel(ins);

 nsit.plotItem(30, NumberSpectrumItemTrend.AXIS_Y1, "wave[30]");

 nsit.plotItem(1, NumberSpectrumItemTrend.AXIS_Y1, "wave[1]");

 }

 catch (Exception ex)

 {

 System.out.println("caught exception : "+ ex.getMessage());

 System.exit(-1);

 }

 mainFrame = new JFrame();

 mainFrame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 mainFrame.getContentPane().add(nsit);

 attList.startRefresher();

 mainFrame.setSize(800,600);

 mainFrame.pack();

 mainFrame.setVisible(true);

 // Test hide and show item!

 for (int i=0; i<10; i++)

 {

 try

 {

 Thread.sleep(5000);

 }

 catch(Exception ex)

 {

 }

 nsit.hideItem(7);

 try

 {

 Thread.sleep(5000);

 }

 catch(Exception ex)

 {

 }

 nsit.showItem(7);

 }

 }AttributeList attl = new AttributeList();

StringImageTableViewer sitv = new StringImageTableViewer ();

Try

{

 isi = (IStringImage) attl.add("my/test/dev/att_str_image");

 sitv.setAttModel(isi);

}

 catch (Exception ex)

 {

 System.out.println("Cannot connect device");

 ex.printStackTrace();

 }

The screenShot below show the NumberSpectrumItemTrend used for only two elements (index

1 and index 30) of a numberSpectrum attribute :

Image attributes
An image attribute is a Tango attribute whose format is Image (2 dimensional array) whatever

the data type of the attribute. In this chapter we will see how to view and / or set a single image

attribute.

One single image attribute

NumberImage attributes

By number image attribute we mean any Tango Attribute whose format is ñImageò (2

dimensional array) and whose data type is one of the numerical types. No matter if itôs a

DevLong, DevDouble , or whatever numerical type. All the attributes which are not a video

image such as a 2 dimensional array of numeric data, are considered to be NumberImage

attributes.

The NumberImageViewer is used to display the value of a 2 dimensional array of numeric

data (not a video image). The following code sample illustrates the use of the

NumberImageViewer.

INumberImage ini ;

AttributeList attl = new AttributeList();

NumberImageViewer niv = new NumberImageViewer();

Try

{

 ini = (INumberImage) attl.add("jlp/test/1/att_image");

 niv.setModel(ini);

}

 catch (Exception ex)

 {

 System.out.println("Cannot connect device");

 ex.printStackTrace();

 }

The following screen shot shows the result of the execution of the code sample above :

S

ATK does not provide any component for setting a NumberImage attribute.

RawImage attributes

RawImage attributes are used for the images coming from video camera, CCDs. By convention

the Raw Image data (image coming from video camera, CCDs) should be sent as attributes with

format = image and data type = DevUchar. The RawImage feature is not available for the

moment in the standard ATK. We are waiting for a tango definition of CCD / vidéo camera

images with different formats (jpeg, png, é) in order to implement RawImages in standard

ATK. The ATK RawImage viewer will be supported when the attribute data type

ñDevEncodedò will be available in Tango API.

ATK does not provide any component for setting a RawImage attribute .

StringImage attributes

By string image attribute we mean any Tango Attribute whose format is ñImageò (2 dimensional

array) and whose data type is DevString.

The StringImageTableViewer is used to view a StringImage attribute (a 2 dimensional array

of string). Each element of the attribute array will be displayed in a cell in a swing JTable.

The following code sample illustrates the use of the StringImageTableViewer.

IStringImage isi;

AttributeList attl = new AttributeList();

StringImageTableViewer sitv = new StringImageTableViewer ();

Try

{

 isi = (IStringImage) attl.add("my/test/dev/att_str_image");

 sitv.setAttModel(isi);

}

 catch (Exception ex)

 {

 System.out.println("Cannot connect device");

 ex.printStackTrace();

 }

ATK does not provide any component for setting a StringImage attribute.

Device Commands

Display a single tango device command

There are several viewers available to represent a Tango device command. The choice of the

viewer depends on the type of the input and output argument of the command. For example the

VoidVoidCommandViewer is used for all commands with no input argument and no output

argument.

Commands with no input and no output argument (VoidVoidCommand)

The commands with no input and no output argument are called VoidVoid commands in ATK.

The following list presents all the command viewers suitable for VoidVoidCommands:

1. VoidVoidCommandViewer: is a sub-classes of swing JButton. The label of the Jbutton

is the name of the command. A click on a VoidVoidCommandViewer will immediately

launch the execution of the corresponding command on the tango device. When the

mouse enters the button a tooltip will display the name of the tango device on which the

command will be executed.

2. ConfirmCommandViewer: is also a sub-classes of swing JButton.. The difference with

previous viewer is that the click on the ConfirmCommandViewer button will just popup

a confirmation dialog window. The device serverôs command is executed only if the

user confirms the dialog window. As for the VoidVoidCommandViewer when the

mouse enters the button a tooltip will display the name of the tango device on which the

command will be executed.

