Transition metal dihalides: from band structure to magnetic properties

- A. Yaresko, C. González-Orellana, D. Bikaljević, A.J. Thakur, A. Weber,
 - D. Streiner, P. Gargiani, J. Dreiser, J.I. Pascual, C. Rogero, M. Ilyn

Abstract

Transition metal dihalides (TX₂) are quasi-2D magnets with weak inter-layer interaction. Their magnetic properties vary depending both on the filling of transition metal (T) 3d states and on the covalency of T d – X p bonds. Recently, monolayer-thick films of TX₂ dihalides were grown on various substrates allowing to study 2D magnetism. In this talk I shall show results of band structure calculations for bulk FeX₂ and NiX₂ dihalides. Calculations reproduce weak easy plane anisotropy in NiX₂ and the change of magnetic ground state within a layer from ferro- for NiCl₂ to helimagnetic for NiBr₂. The results of a fit of the total energies calculated for spin-spiral structures to the J_1 – J_3 , J_c Heisenberg model show that the change of the magnetic ground state is caused by the increased strength of J_3 in NiBr₂. Calculations for FeX₂ confirm, in agreement with experimental results, easy axis anisotropy. XMCD spectra calculated for both compounds are compared to experimental spectra for thin films. Calculated magnetic moments are compared to the experimental values extracted using XMCD sum rules.