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The Problem

We want to study the dynamical behaviour of filled elastomers polymers at the scale of the
inclusions when submitted to a stress.
Here, carbon black dispersed in an elastomer matrix of an Ethylene-Propylene-Rubber
(EPR). The Carbon black content is of the order of 20% vol, i.e. above the percolation
threshold. Different mechanical behaviours are observed when a deformation is applied to
the system.

If the polymer is cross-linked,
the system is essentially elastic,
If the polymer is not, the system
is visco-elastic.
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CSAXS

The time evolution of the microstructure of the sample can
be studied with Coherent Small Angle X-ray Scattering
(CSAXS).

Schema of a D2AM SAXS setup
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Coherence conditions

One obtains speckles provided some conditions are (roughly) fulfilled:
-Transverse coherence condition:

ε × φ ≤ λ (ε ≤ 10µrd, φ ' 10µm and λ ' 1.6Å)

-Detection Resolution: same order of magnitude: the detector aperture should be in the
10µrd range: 20µm at about 2 m.
-Longitudinal coherence: depends on the beam monochromaticity: In SAXS, the length Λ

along the beam path where scattered amplitudes interfere is essentially angle-dependent (θ
is the Bragg angle):

Λ ≤ λ2/(4δλ × θ2)

For SAXS, for θ < 1 × 10−2 rd, Λ is in the millimeters range.
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Examples with DI-CCD

Observation of the impact of 8 KeV X-rays on a DI-CCD :(a). Distribution of the droplets total
charge obtained during a series of 1000 frames, where some piling-ups occur: On can easily
know the number of X-rays in one droplet (b). Energy distribution observed on a rotating
anode (CuKα) with a multlayer sample (Fe-Pd), where the FeKα and the PdL can be
filtered.
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homodyne

Both systems have been studied by “in situ” stretching in a CSAXS measurement at D2AM
(French CRG BM2 at ESRF).
After a 10% deformation, only the transversal movement of the speckle pattern is observed.
This can be estimated by comparing the average pattern with the successive frames. A
displacement of 4 × 10−5 corresponds to one pixel of our detector.

q-variations of the speckle patterns after a 10% deformation
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Homodyne observation of movement shift out of the
detector:

δl =

ds−p

Dp−s

× vt
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sample movement

We work at the beginning of the Far-Field position:
Dp−s = 0.4m ≥ φ2/(2λ) = 0.3m

The beam divergence is:
ε ' λ/φ

For a sample movement of vt, the scattering at the ~q is now
observed at a different pixel of the CCD at a distance d:

δq = 2π
λ
× vt

Dp−s
= 2π

λ
× δl

d

so that:

δldet '
ds−d

Dp−s
× vt
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Speckle Dynamics

In this experience, only the flowing of the sample was observed. We want
both fluctuations and sample movement: Heterodyning!

Setup for heterodyning:
We pile the moving sample and a reference with a total thickness small
enough vs longitudinal coherence length. For SAXS, it may be one
centimeter! The beam is crossing the hybrid sample.
By studying correlations, one is able to observe both flowing (sample
velocity v) and fluctuations.
Reference: Bern and Pecora (1976)
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Obtaining correlations

One first averages over experimental time:

< I(~q, t + t′)I(~q, t′) >t′

For each pixel of wavevector ~q. Not enough statistics! One
carries out also an average over a suitable ~q domain Dq:

γ(t, q) =< I(q, t + t)I(q, t) >q / < I(q, t) >2
q

EXPERIMENT CARRIED OUT AT THE IMMCAT
BEAMLINE OF APS (ARGONNE, ILLINOIS)
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Typical images
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Typical scattering obtained from 500 frames, 0.25s each
(above) and a small region (50*50 pixels) of the previous

image
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Directional

Correlations were fitted by means of the equation:

g2(q, φ, t) = 1 + β(1 − x)2 +

2x(1 − x)β cos(ωt)γ(t/τ(q)) + (1)

x2βγ2(t/τ(q))

where x is the degree of mixing:

x∆ = 〈〈Is〉t〉~q∈∆/(〈Ir + 〈Is〉t〉~q∈∆). (2)

β(1 − x)2 is the static coherence from the reference sample,
the second term is the interference between the two
samples, and x2β corresponds to the homodyne dynamic
part from fluctuating sample
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Fits

We found that the relaxation γ(t/τ) can be written:
γ(t/τ) = exp(−(t/τ)1.66)

τ(q) corresponds to the fluctuations in the sample. The
exponent µ ' 1.66 seems necessary to take account of
data.

The oscillating behaviour cos(ωt), where: ω = qv cos(φ), is
the phase shift introduced by the sample movement in the
amplitude diffracted by the reference.

The domains for calculating the q-averages must be
selected both from the value of |~q|- and from that of cos(φ).
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Typical fits: various angles φ

γ(q, φ, t) = 1 + β0 + β1 × exp(−(t/τ(q))µ) × cos(ωt)
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Oscillating behaviour of the normalised correlations for various angles at q = 6.4 × 10−3

Å−1 observed during relaxation of the cross-slip sample after 100% elongation
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Typical fits: various q-values

γ(q, φ, t) = 1 + β0 + β1 × exp(−(t/τ(q))µ) × cos(ωt)
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Oscillating behaviour of the normalised correlations for the same angle (φ = 122 deg) at
various q-values observed during relaxation of the cross-slip sample after 100% elongation
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Scaling

Scaling of ω(q, φ) for the relaxation of the cross-linked system, after 20000s. The relation:
ω = vq cos(φ) is verified, with v = 1.5nm/s
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Velocities

Very long relaxation process in both cases (cross-linked
and un-cross liked). Velocities down to ' 15Å/s.

Relaxation of the uncrossed-slip (open circles) and of the
crossed slip sample (close circles).
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Relaxation

Scaling of τ(q, φ) for the relaxation of the cross-linked system, after 20000s.
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dirPer

The fluctuations in the direction perpendicular to flowing have an exponential behaviour in a
very narrow domain of φ (about 1 degree).
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Correlations observed in the direction φ = 90 deg, for q-values where exponentials are
roughly obtained
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conclusion

1. Heterodyning works!

2. The heterodyning method seems promising fot this type
of studies.

3. We only observed “recovery” after a 100% elongation

4. The simple model of relaxation of Bern and Peccora
does not explain the relaxations observed.

γ(t) = 1 + β0 + β1 × exp(−Dq2t) × cos(qv cos(φ)t)

5. We can use this method for the study of defromation of
opaque samples (metals..)
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