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Outline

• Phase retrieval applications

• Phase retrieval algorithms
 Iterative Transform Algorithm

– Hybrid input-output algorithm
 Gradient search algorithms

• Support Constraint
 Importance
 Reconstructing object support from autocorrelation support
 Tightening the support constraint
 Several examples
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Phase Retrieval Application:
Imaging through Atmospheric Turbulence

• Lensless imaging with laser illumination
 Measure far-field speckle intensity
 Complex-valued image

• Both mathematically similar to x-ray diffraction

} blurred
imageobject

aberrated optical system

Detector array
Laser

Atmosphere

• Problem: atmospheric turbulence causes phase errors, limits resolution

• Labeyrie’s stellar speckle interferometry yields Fourier magnitude
 Incoherent (real, nonnegative) image
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PROCLAIM 3-D Imaging Concept
Phase Retrieval with Opacity Constraint LAser IMaging
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Determine Hubble Space Telescope
Aberrations from PSF

Wavefronts in pupil plane and focal plane
are related by a Fourier Transform

2.4 m

F.T.

(Hubble Space Telescope)

Measurements & Constraints:
Pupil plane: known aperture shape
     phase error fairly smooth function
Focal plane: measured PSF intensity
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Next Generation Space Telescope
James Webb Space Telescope

• See red-shifted light from early universe
 0.6 to 28 µm
 L2 orbit for passive cooling,

avoiding light from sun and earth
 6 m diameter primary mirror

– Deployable, segmented optics
– Phase retrieval to align segments

http://ngst.gsfc.nasa.gov/
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Optical Testing Using Phase Retrieval

CCD Array
measures
intensity of
reflected
wavefront

Part
under

test

Illumination
Wavefront

Computer

Display of
measured
wavefront

Optical wave fronts (phase) can be measured by many forms of interferometry

Novel wave front sensor: a bare CCD detector array, detects reflected intensity

Wave front reconstructed in the computer by phase retrieval algorithm

Approach:
Simulation Results

µmPSF at z=333

PSF1

PSF at z=f=500µm

PSF2
Actual wrapped phase

True
Phase

Reconstructed wrapped phase

Retrieved
Phase
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Image Reconstruction from X-Ray
Diffraction Intensity

Coherent
X-ray beam

Target

Detector
array

(CCD)

(electron micrograph)
Collection of gold balls

(has complex index of refraction)
Far-field diffraction pattern

(Fourier intensity)
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Phase Retrieval Basics

Phase retrieval problem:
      Given F (u,v )  and some constraints on  f (x,y ),
      Reconstruct  f (x,y ), or equivalently retrieve  ψ (u,v )

  

� 

Fourier transform:  F (u,v) = f (x ,y)e −i 2π (ux +vy )dxdy−∞
∞
∫∫

= F (u,v)e iψ (u ,v ) = F f (x ,y )[ ]

  

� 

Inverse transform: f (x ,y) = F (u,v)e i 2π (ux +vy )dudv−∞
∞
∫∫ = F −1 F (u,v )[ ]

(Inherent ambiguitites: phase constant, images shifts, twin image all result in same data)
  

� 

F(u,v ) = F f (x ,y)[ ] = F e ic f (x − xo ,y − yo )[ ] = F e ic f * (−x − xo ,−y − yo )[ ]

  

� 

Autocorrelation:

rf (x ,y ) = f ( ′ x , ′ y )f * ( ′ x − x , ′ y − y )d ′ x d ′ y −∞
∞
∫∫ = F −1 F (u,v ) 2[ ]

•  Patterson function in crystallography is an aliased version of the autocorrelation
•  Simply need Nyquist sampling of the Fourier intensity to avoid aliasing
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Autocorrelation
versus Patterson Function

Autocorrelation Function:
Fourier intensities adequately
(Nyquist) sampled or oversampled
NO Aliasing

  

� 

Autocorrelation:

rf (x ,y ) = f ( ′ x , ′ y )f * ( ′ x − x , ′ y − y )d ′ x d ′ y −∞
∞
∫∫ = F −1 F (u,v ) 2[ ]

If in repeated array,
Object embedded
in zeros by factor of 2

AC

has all vector
separations
in object

� 

Δu ≤ λz 2Du( )

Autocorrelation Function
=Patterson function
Fourier intensities undersampled
-- forced by crystallographic periodicity
Get Aliasing

In repeated array,
Object NOT embedded
in zeros by factor of 2

AC

(unit cell)

� 

Δu = λz Du > λz 2Du( )
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Constraints in Phase Retrieval

• Nonnegativity constraint:  f(x, y) ≥ 0
 True for ordinary incoherent imaging, crystallography, MRI, etc.
 Not true for wavefront sensing or coherent imaging (sometimes x-ray)

• The support of an object is the set of points over which it is nonzero
 Meaningful for imaging objects on dark backgrounds
 Wavefront sensing through a known aperture

• A good support constraint is essential for complex-valued objects
 Coherent imaging or wave front sensing

• Atomiticity when have angstrom-level resolution
 For crystals -- not applicable for coarser-resolution, single-particle

• Object intensity constraint (wish to reconstruct object phase)
 E.g., measure wavefront intensity in two planes (Gerchberg-Saxton)
 If available, supercedes support constraint
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First Phase Retrieval Result

(a) Original object, (b) Fourier modulus data, (c) Initial estimate
(d) – (f) Reconstructed images — number of iterations: (d) 20, (e) 230, (f) 600

Reference: J.R. Fienup, Optics Letters, Vol 3., pp. 27-29 (1978).
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Measured intensity

Iterative Transform Algorithm

F

gk +1 x,y( ) = ′gk x,y( )                   , x,y( ) ∈  Support
gk x,y( ) − β ′gk x,y( ), x,y( ) ∉  Support

⎧
⎨
⎩

Hybrid Input-Output version

F –1
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Iterative Transform Algorithm Versions:
Error-Reduction versus HIO

• Error reduction algorithm

 Satisfy constraints in object domain
 Equivalent to projection onto (nonconvex) sets algorithm
 Equivalent to successive approximations
 Similar to steepest-descent gradient search
 Proof of convergence (weak sense)
 In practice: slow, prone to stagnation, gets trapped in local minima

• Hybrid-input-output algorithm

 Uses negative feedback idea from control theory
–  β  is feedback constant

 No convergence proof (can increase errors temporarily)
 In practice: much faster than ER
 Can climb out of local minima at which ER stagnates

� 

ER:  gk +1 x( ) =
′ g k x( ) ,  x ∈S &  ′ g k x( ) ≥ 0

0 ,  otherwise
⎧ 
⎨ 
⎩ 

� 

HIO:   gk +1 x( ) =
′ g k x( ) ,  x ∈S &  ′ g k x( ) ≥ 0

gk x( ) − β ′ g k x( ) ,  otherwise
⎧ 
⎨ 
⎩ 
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Image Reconstruction from
Simulated Speckle Interferometry Data

J.R. Fienup, "Phase Retrieval Algorithms: A Comparison," Appl. Opt. 2l, 2758-2769 (1982).

Labeyrie’s
stellar speckle
interferometry

gives this
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Error Metric versus Iteration Number
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Nonlinear Optimization Algorithms
Employing Gradients

Minimize Error Metric, e.g.:

Repeat three steps:

 1. Compute gradient:

     
∂E
∂p1

 ,  
∂E
∂p2

 , …

 2. Compute direction of
search
 3. Perform line search

a

b

c

Parameter 1

Pa
ra

m
et

er
 2

Contour Plot of Error Metric

Gradient methods:
(Steepest Descent)
Conjugate Gradient
BFGS/Quasi-Newton
…

E =  W (u)[G(u) – F(u) ]2
u
∑
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Analytic Gradients
with Phase Values as Parameters

E =  W (u)[G(u) – F(u) ]2
u
∑

P [•]  can be a single FFT or
multiple-plane Fresnel transforms

with phase factors and obscurations

Analytic gradients very fast
compared with

calculation by finite differences
J.R. Fienup, “Phase-Retrieval Algorithms for a Complicated Optical System,” Appl. Opt. 32, 1737-1746 (1993).
J.R. Fienup, J.C. Marron, T.J. Schulz and J.H. Seldin, “Hubble Space Telescope Characterized by Using
Phase Retrieval Algorithms,” Appl. Opt. 32 1747-1768 (1993).

 G u( ) = P g x( )[ ]
g(x ) = gR x( ) + i gI x( ) = mo x( )eiθ x( )  ,  θ x( ) = aj Z j x( )

j =1

J
∑Optimizing over

where

 
GW u( ) =W u( ) F u( ) G(u)

F u( ) −G u( )⎡

⎣
⎢

⎤

⎦
⎥  ,  and  gW (x ) = P† GW u( )⎡⎣ ⎤⎦

For point-by-point pixel (complex) value, g(x),
∂E

∂g(x )
  =   2 Im gW *(x ){ }

For point-by-point phase map, θ(x), ∂E
∂θ(x )

  =   2 Im g x( )gW * x( ){ }
For Zernike polynomial coefficients, ∂E

∂aj
  =   2 Im g x( )gW * x( )

x
∑ Z j x( )⎧

⎨
⎩

⎫
⎬
⎭
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Support Constraints
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Example of Algorithm for Deriving
Bounds on Object Support

Object
Support 

 Forming Autocorrelation Support
A = S – S ≡ {x – y : x, y ∈ S}

Triple-Intersection Rule:  [Crimmins, Fienup, & Thelen, JOSA A 7, 3 (1990)]

Triple Intersection of Autocorrelation Supports

a1

a2

0

L = A ∩ (A + a1) ∩ (A + a2) ∩ …

Autocorrelation Support

a1

a2

0

a1, a2 … are “extreme points”
they must all be contained

in one translate of the object, S

S
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Triple Intersection for Triangle Object

Object Support Autocorrelation Support

 • Family of solutions for object support from autocorrelation support

 • Use upper bound for support constraint in phase retrieval

(d)Alternative
Object Support

Triple Intersection – Support Constraint
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Triple Intersection for Collections of Points
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Arrangements of Points
Preventing Triple Intersection
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Reconstruction of Values
of Collection of Points
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Autocorrelation Support

Object
Support

Forming the
Autocorrelation

Support

Autocorrelation
Support
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Locator Sets

Triple intersection rule
Includes all possible object supports that give rise to autocorrelation support
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Combination of Locator Sets

•  Must be able to restrict alignment horizontally and vertically,
— if half the autocorrelation width in each dimension

                   and determine whether have twinned locator set

•  Then align and intersect locator sets to arrive at smaller (better) locator set
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Binary Object Example
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Finding Vertex Points
on Autocorrelation Support

20 40 60 80 100 120
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(Use Vertex Points for Triple Intersection)
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3 Locator Sets and a Combination of Them
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Gray-Level Object Example
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Finding Vertex Points
on Autocorrelation Support
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Use Vertex Points for Triple Intersection



Coherence 2005, JRF, 6/05-33

2 Locator Sets and a Combination
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Object for Laboratory Experiments

ST Object. The three concentric discs forming a pyramid can be seen as
dark circles at their edges. The small piece on one of the two lower legs
was removed before this photograph was taken.
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PROCLAIM 3-D Imaging Concept
Phase Retrieval with Opacity Constraint LAser IMaging
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3-D Laser Fourier Intensity
Laboratory Data

Data cube:

1024x1024 CCD pixels
   x 64 wavelengths

Shown at right:
128x128x64 sub-cube

(128x128 CCD pixels at
each of 64 wavelengths)
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Imaging Correlography

• Get incoherent-image information from coherent speckle pattern

• Estimate 3-D Incoherent-object Fourier squared magnitude

 Like Hanbury-Brown Twiss intensity interferometry

• Easier phase retrieval: have nonnegativity constraint on incoherent image

• Coarser resolution since correlography SNR lower

FI (u,v,w) 2 ≈ Dk (u,v ,w ) − Io[ ]⊗ Dk (u,v,w) − Io[ ] k
                       (autocovariance of speckle pattern)

References:

P.S. Idell, J.R. Fienup and R.S. Goodman, "Image Synthesis from Nonimaged Laser Speckle
Patterns," Opt. Lett. 12, 858-860 (1987).

J.R. Fienup and P.S. Idell, "Imaging Correlography with Sparse Arrays of Detectors," Opt.
Engr. 27, 778-784 (1988).

J.R. Fienup,  R.G. Paxman, M.F. Reiley, and B.J. Thelen, “3-D Imaging Correlography and
Coherent Image Reconstruction,” in Proc. SPIE 3815-07, Digital Image Recovery and
Synthesis IV, July 1999, Denver, CO., pp. 60-69.
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Image Autocorrelation from Correlography
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Thresholded Autocorrelation
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Triple Intersection
of Autocorrelation Support
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Locator Set, Slices 50-90
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Dilated Locator Set
used as Support Constraint
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Fourier Modulus Estimate
from Correlography
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Fourier Magnitude, DC Slice

Before Filtering             After Filtering 
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Incoherent Image
Reconstructed by ITA
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Support Constraint from Thresholded
Incoherent Image



Coherence 2005, JRF, 6/05-47

Dilated Support Constraint
from Thresholded Incoherent Image
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Coherent Image Reconstructed by
ITA from One 128x128x64 Sub-Cube
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Example on Real  X-Ray Data
(Data from M. Howells/LBNL and H. Chapman/LLNL)

(a) X-ray data (b) Autocorrelation from (a)

(c) Initial Support constraint
computed from (b)

(d) Electron micrograph
of object

(b) Triple Intersection
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Status of Support Estimation

• “Shrink wrap” algorithm tries to find support dynamically during iterations,
but all other phase retrieval algorithms need a support constraint

• A low-resolution image of object by another sensor would help by
providing a low-resolution support constraint, but phase retrieval works
best with a fine-resolution support constraint

• Have several methods for fine-resolution support from autocorrelation

• Need to make support estimation from the autocorrelation more robust
because of additional difficulties
 Missing data at low spatial frequencies because of the beam stop
 Complex-valued objects
 High levels of noise in single frames
 3-D support estimation has been done [1], but not as mature as 2-D

[1] “3-D Imaging Correlography and Coherent Image Reconstruction,” J.R. Fienup, R.G. Paxman, M.F. Reiley, and
B.J. Thelen, in Proc. SPIE 3815-07, Digital Image Recovery and Synthesis IV, July 1999, Denver, CO., pp. 60-69.
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