

Experiences with the Color X-Ray Camera At the BAMline

X BAM

Software and Experiments at Synchrotron

Capillary Optics, Measurements with conventional X-ray source

Commercialisation

Sensor head with pn-CCD

Overview

•Components of the CXC

•Measurements in the laboratory

•Measurements at the synchrotron

Beyond imaging

•Perspectives

•Conclusion

Color X-ray Camera

combination of the energy resolution of a charge-coupled device (CCD) with capillary optics

Camera detector chip

Column-parallel, split frame readout pnCCD with frame store technique, 400 / 1000 Hz

Image area	11,9 x12,3 mm ²
Pixel size	(48 x 48) µm²
Number of pixels	69696
Pixel readout speed	28 MPixels/s
Frame rate	400 / 1000 Hz
Sensitive thickness	450 µm
Quantum efficiency	>95%@3- 10keV ,
	>30%@20keV
Readout noise	<3e ⁻ /Pixel
Charge transport efficiency	>0.9999

Camera detector chip

Column-parallel, split frame readout pnCCD with frame store technique, 400 / 1000 Hz

Image area	11,9 x12,3 mm ²
Pixel size	(48 x 48) µm²
Number of pixels	69696
Pixel readout speed	28 MPixels/s
Frame rate	400 / 1000 Hz
Sensitive thickness	450 µm
Quantum efficiency	>95%@3- 10keV ,
	>30%@20keV
Readout noise	<3e ⁻ /Pixel
Charge transport efficiency	>0.9999

Schematic view on the pnCCD

Eventanalysis

Not enough Photons

Good Illumination

Too much Photons

- 1. Common-Mode Correction
- 2. Dark-Frame Correction
- 3. Charge Transfer Efficiency / Gain Correction
- 4. Valid Photon: Energy and Position
- 5. Construction of Spectra

	Events	
	[Pixel]	[%]
	1	1.1
•	2	19.2
	3	32.2
	4	43.6
	5	2.6
	6	0.6
	7	0.4
	8	0.2

Count rate

Countrate

Spectra

Optics

Color for the Camera

Colour for the Camera

Fast VisualizationParameter Reduction

Laboratory setup

Head of a red tooth sorex 1:1 capillary Source: Rh-Microfocus tube (U=40keV, I=700µA) Measurement time: 60min

30 Watt Microfocus Rh source, 1hour **EAM 50 ms / Pixel**

Layout of the BAMline

Double crystal monochromator E/ΔE~10³

Double multilayer monochromator E/∆E~40 Wavelength shifter Stability: 0.01% Homogeneity: 0.02% (± 1 mrad)

Görner et al. Nucl Instr. Meth. A 467/468 (2001)

XRF setup at the BAMline

Biological samples

Slicing

With a broad and flat beam a slice is cut out from the volume to be examined

Beyond Imaging

Double Dispersive X - Ray Fluorescence

Platinum in Gold

PGE are important for provenance

The gold and platinum lines are overlapping

Excitation below the Au edge induces Raman scattering

1. Excitation above and below the Pt L-edge

Three Approaches with Energy Dispersive Setup:

BAM I Department of Analytical Chemistry; Reference Materials

3. Difference to pure gold

2. K-edge

Using the Energy Dispersion

exciting X-ray beam 11564 eV height = 2mm, width = $100\mu m$

Best Result Pt

Applications

Gold from Egypt ...

... Results at the SR2A in Paris

XRF setup at the BAMline

Measurements under very flat angle, camera 90°

TXRF

THIN FILM CHARACTERIZATION

Grazing Exit GEXA

Outlook

- Push resolution (subpixel, optics)
- Higher frame rates (more events per second)
- Table-Top-Detector Device (no pump, air cooling)
- Laboratory setup of an XRF-Microscope
- Experiments
- Software development

Thank you for your attention!

