Multichannel Silicon Drift Detectors for High Speed, High Resolution X-ray Spectroscopy Applications

A.Niculae, R. Eckhardt, A.Liebel, H. Soltau

PNDetector GmbH, Munich, Germany

D. Schlösser, G. Lutz, L. .Strüder PNSensor GmbH, Munich, Germany

A. Niculae, Paris , 16th of March 2015

Silicon Drift Detector – a success story

Silicon drift detector

- introduced by Gatti and Rehak in 1984
- revolutionized the spectroscopy world in the last ten years (the "smart phone" among the spectroscopic detectors)

ehak in 1984 scopy world in the last ne" among the Detector / PNSensor

SDDs manufactured by PNDetector / PNSensor

- first SDDs to serve the industry and the research
- monolithic integration of 1st amplifying FET
 - minimization of the input capacitance (down to 50 fF)
 - excellent energy resolution at high count rate
 - o robust against pickup, microphony
- ultra-clean fabrication technology leading to low leakage current values I_{leak} < 100 pA /cm² @ RT
- in 2013/2014 a new manufacturing line has been built and is being qualified

anode

field strips

→ -V →

PNDetector

A. Niculae, Paris, 16th of March 2015

path of

Single channel SDDs

Standard round geometry (SDD):

Anode and FET in the center of the device

- Radial drift fields
- Sizes: 5, 10, 20, 30, 60, 100 mm²

Droplet type geometry (SD3):

- Displaced anode and FET
- Reduced input capacitance
- Improved peak to background
- Sizes: 5, 10, 20, 30 mm²

PNDetector

A. Niculae, Paris, 16th of March 2015

Single channel SDDs

Spectroscopic performance at the theoretical limit

Single channel SDDs

Excellent light element performance due to low noise and optimum EW

energy resolution at C-K down to 37 eV

energy threshold < 50 eV</p>

Focus on customized detector solutions – multi-channel SDDs are part of it.

Why multi-channel SDDs?

Applications requiring multi-channel SDD detectors:

1. Good spectroscopic performance at ultra-high count rates (e.g. > 1 Mcps)

" a sorrow shared is a sorrow halved"

- 2. Special geometry for optimum collection of the incoming photons
- 3. Spatial resolution for the incoming x-rays and γ -rays

Advantages of monolithically integrated SDD arrays

- Minimum dead area between the cells
- Flexible design of the cells
- Compact packaging of the whole detector

Applications requiring multi-channel SDD detectors:

1. Good spectroscopic performance at ultra-high count rates (e.g. > 1 Mcps)

" a sorrow shared is a sorrow halved"

2. Optimum geometry for high collection efficiency of the incoming photons

WERE REPORTED FOR THE PARTY OF THE PARTY OF

3. Spatial resolution for the incoming x-rays and γ -rays

Multi-channel SDDs for ultra-high count rates

Rococo1 - 4-channel SD3 detector

- active area 4 x 10 mm²
- SD3 topology excellent energy resolution
- light element detection down to Be or lower

Multi-channel SDDs for ultra-high count rates

Compact 7-channel SDD detector

- > active area of 7 x 10 mm²
- > maximal count rate capability of 7. 10⁶ cps
- > allow compact packaging on socket with Peltier cooler

22,50

Applications requiring multi-channel SDD detectors:

- Good spectroscopic performance at ultra-high count rates (e.g. > 1 Mcps) " a sorrow shared is a sorrow halved"
- 2. Optimum geometry for high collection efficiency of the incoming photons

3. Spatial resolution for the incoming x-rays and γ -rays

Multi-channel SDDs for high collection angle

Rococo2 – 4-channel SD3 detector with central hole

ideal as pole-shoe EDX detector in SEM / TEM

Comparative SEM elemental maps

- same acquisition time
- up to 100x more photons collected with the Rococo2 detector

A. Niculae, Paris , 16th of March 2015

Multi-channel SDDs for high collection angle

Rococo2 – 4-channel SD3 detector with central hole

A. Niculae, Paris, 16th of March 2015

- > ultra-fast XRF analysis ("in-line" QC) in combination with poly-capilary optics
- high throughput measurements

- > active area 60 mm²
- input count rate > 2.10⁶ cps

Multi-channel SDDs for high collection angle

Rococo2 – 4-channel SD3 detector with central hole

- concept for a flat configuration for Nano-Beam XRF
- detector package can be less than 1 cm thin

Multi-channel SDDs with large collection area

Large area SDDs for synchrotron experiments:

- 3x100 mm² SDDs (1 sensor packaged)
- 6x100 mm² SDDs (2 sensor in a package)

A. Niculae, Paris , 16th of March 2015

Multi-channel SDDs with large collection area

A. Niculae, Paris , 16th of March 2015

Applications requiring multi-channel SDD detectors:

1. Good spectroscopic performance at ultra-high count rates (e.g. > 1 Mcps)

" a sorrow shared is a sorrow halved"

- 2. Optimum geometry for high collection efficiency of the incoming photons
- 3. Spatial resolution for the incoming x-rays and γ -rays

the SDD arrays can be combined with scintillators for γ -ray imaging

Thank you for your attention!

