SYNEMAG 2012, Grenoble, 18.10.2012

Quantum criticality in heavy-fermion compounds: effect of magnetic field

O. Stockert Max-Planck-Institut CPfS, Dresden, Germany

Outline

- Magnetic quantum phase transitions
- Effect of dimensionality: CeCu_{6-x}Au_x
- Magnetism versus superconductivity: Cd-dopded CeCoIn₅, CeCu₂Si₂
- Unconventional superconductivity in CeCu₂Si₂, magnetically driven sc
- Conclusions

Collaborations

Thanks ...

J. Arndt, M. Deppe, H.S. Jeevan, C. Geibel, M. Nicklas, H.Q. Yuan, F. Steglich

E. Faulhaber, A. Schneidewind*, M. Loewenhaupt

A. Rosch, A. Schröder, H. v. Löhneysen

G. Zwicknagl, M. Neef

K. Prokes, N. Stüßer, K. Habicht, S. Gerischer, P. Smeibidl, M. Meißner

M. Enderle, K. Schmalzl, W. Schmidt, F. Thomas, X. Tonon, S. Pujol

H. Schneider

S. Kirchner

Q. Si

Max-Planck-Institut CPfS Dresden

Institut für Festkörperphysik, TU Dresden

Universität Karlsruhe

TU Braunschweig

*Helmholtz-Zentrum-Berlin

Institut Laue-Langevin Grenoble

JCNS at FRM-II, Forschungszentrum Jülich

Max-Planck-Institut PKS Dresden

Rice University Houston

Work partially funded by SFB 463, FERLIN, FOR 960 and EU

Continuous phase transitions

Continuous phase transitions:

- (critical) fluctuations of order parameter
- critical exponents in thermodynamic properties:
 - α , β , γ , ... (scaling laws)

Critical behavior depends on

- dimensionality
- dimensionality/symmetry of order parameter

range of interactions/fluctuations

classification → universality classes

Can concept also be applied to QPTs?

Quantum phase transitions

Continuous phase transition for $T \rightarrow 0$

- → Quantum phase transition (QPT) with unusual low temperature properties:
- C/T \propto -In T; $\Delta \rho \propto T^{\alpha}, \alpha \neq 2$ (NFL)
- superconductivity

Origin?

- Magnetic order
- (Quantum-)critical spin fluctuation
- Interplay between AF(FM) and SC

Neutrons ideal microscopic probe! Magnetic field easy to tune, no change in disorder [reviews:

QPT: H. v. Löhneysen, RMP ´07 SC: C. Pfleiderer, RMP '09]

Heavy fermions

• Incommensurate antiferromagnetic order for $x > x_{c_1} = 0$ $\Gamma \approx 2 \text{ J/molK}^2 (T \rightarrow 0)$ • Magnetic instability, $x = x_c \neq 0.1$: $C/T \sim -\ln T$; $\Delta \rho \sim T (Declu)_{6-x}Au_x = 0$ • Magnetic instability, $x = x_c \neq 0.1$: $C/T \sim -\ln T$; $\Delta \rho \sim T (Declu)_{6-x}Au_x = 0$ • Schwer-Fermion-Syst • x = 0.1

• Incommensurate antiferromagnetic order for $x > x_{c_1} = Q_1^{-1}$ $\Gamma \approx 2 \text{ J/molK}^2 (T \rightarrow 0)$ • Magnetic instability, $x = x_c \neq 0.1$: $C/T \sim -\ln T$; $\Delta \rho \sim T (DeEu_{6-x}Au_x)$ $\Rightarrow \text{Schwer-Fermion-Syst}$ • x = 0.1

Scaling of dynamic susceptibility in CeCu_{5.9}Au_{0.1}

E/T scaling with anomalous exponent $\alpha = 0.75$, $\chi'' = T^{-\alpha} g(E/T)$ \rightarrow local physics relevant

local scenario ↔ 2D criticality

Magnetic field tuning in CeCu_{5.8}Au_{0.2}

• CeCu_{5.8}Au_{0.2}: $T_N = 220$ mK, $B_c \approx 0.35$ T II c to suppress AF order B = B_c: C/T = γ_0 - a \sqrt{T} ; $\Delta \rho \propto T^{3/2}$ [v. Löhneysen, OS, '01]

Magnetic field tuning in CeCu_{5.8}Au_{0.2}

• CeCu_{5.8}Au_{0.2}: T_N = 220 mK, $B_c \approx 0.35$ T II c to suppress AF order

B = B_c: C/T = γ_0 - a \sqrt{T} ; Δ $\rho \propto T^{3/2}$ [v. Löhneysen, OS, '01]

• $E/T^{3/2}$ scaling \rightarrow 3D critical behavior (SDW-, HMM-scenario)

field tuning distinctly different from concentration tuning of the QPT in CeCu_{6-x}Au_x

Quantum criticality in Celn₃

[Monthoux, Nature '07; Ebihara, PRL '04]

high pressures/magnetic fields needed to drive Celn₃ → Ce(Rh,Co,Ir)In₅ easier tunable

Cd-doped CeColn₅

CeCoIn₅:

- $\Delta \rho \propto T$, $\Delta C/T \propto \ln T$ [C. Petrovic, '01]
- strong AF spin fluctuations, e.g. NMR/NQR [Y. Kohori, '01]
- Cd, doping → AF order

\Rightarrow proximity to a QPT

Neutron scattering on Cd-doped CeCoIn₅

• commensurate AF order with $\tau = (1/2 \ 1/2 \ 1/2)$ below $T_N \approx 2.5 \ K$

• magnetic intensity: kink at $T_c \approx 1.7$ K (B = 0) coexistence of antiferromagnetism and superconductivity

Neutron scattering on Cd-doped CeCoIn₅

Magnetism and superconductivity in CeCu₂Si₂

- Vicinity to quantum critical point at disappearance of antiferromagnetism: - $\Delta \rho \propto T^{1...1.5}$
 - C/T = γ_0 $\alpha\sqrt{T}$ (3D-AF instability)

[Gegenwart, PRL '98; Yuan, Science '03]

Magnetism and superconductivity in CeCu₂Si₂

- Vicinity to quantum critical point at disappearance of antiferromagnetism: - $\Delta \rho \propto T^{1...1.5}$
 - C/T = γ_0 $\alpha\sqrt{T}$ (3D-AF instability)

[Gegenwart, PRL '98; Yuan, Science '03]

Magnetism and superconductivity in A/S-CeCu₂Si₂

- No coexistence of AF and SC on microscopic scale
- Confirmation of µSR and NQR [R. Feyerherm, '97; K. Ishida, '99; OS, '06]

Normal state spin dynamics in S-CeCu₂Si₂

Decrease in intensity and broadening with T

[J. Arndt, OS, PRL '11]

Normal state spin dynamics in S-CeCu₂Si₂

- ω/T^{3/2} scaling of magnetic response (3D critical behavior)

Normal state spin dynamics in S-CeCu₂Si₂

- Considerable slowing down of normal state spin dynamics

 close vicinity to QPT
- ω/T^{3/2} scaling of magnetic response (3D critical behavior)

Spin dynamics in superconducting CeCu₂Si₂

- broad quasielastic Lorentzian response at Q_{AF}
- gapped in the sc state,
 ħω_{gap} ≈ 0.2 meV (≈ 3.9 k_BT_c)
- ħω_{gap} follows roughly BCS order parameter (in contrast to high-T_c sc)

IN12/ILL $k_f = 1.15 \text{ Å}^{-1}$ $\Delta E = 57 \mu eV$

[OS, Nat. Phys., 2011]

Magnetic exchange energies in S-CeCu₂Si₂

Magnetic exchange energy gain ΔE_x :

$$\Delta E_{x} \equiv E_{x}^{S} - E_{x}^{N} = \frac{1}{g^{2}\mu_{B}^{2}} \int_{0}^{\infty} \frac{d(\hbar\omega)}{\pi} [n(\hbar\omega) + 1] \times \left\langle I(\mathbf{q}) \left[\mathrm{Im}\chi^{S}(q_{x}, q_{y}, q_{z}, \hbar\omega) - \mathrm{Im}\chi^{N}(q_{x}, q_{y}, q_{z}, \hbar\omega) \right] \right\rangle$$

 $|\Delta E_x| = 5.36 \cdot 10^{-3} \text{ meV/Ce} >> |\Delta E_c| = 2.27 \cdot 10^{-4} \text{ meV/Ce}$

Magnetic exchange energies in S-CeCu₂Si₂

Magnetic exchange energy gain ΔE_x :

$$\Delta E_x \equiv E_x^S - E_x^N = \frac{1}{g^2 \mu_B^2} \int_0^\infty \frac{d(\hbar\omega)}{\pi} [n(\hbar\omega) + 1] \times \left\langle I(\mathbf{q}) \left[\mathrm{Im}\chi^S(q_x, q_y, q_z, \hbar\omega) - \mathrm{Im}\chi^N(q_x, q_y, q_z, \hbar\omega) \right] \right\rangle$$

 $|\Delta E_x| = 5.36 \cdot 10^{-3} \text{ meV/Ce} >> |\Delta E_c| = 2.27 \cdot 10^{-4} \text{ meV/Ce}$

Conclusions

CeCu_{6-x}Au_x:

 Importance of dimensionality for QCP behavior

Cd-doped CeCoIn₅, CeCu₂Si₂:

Coexistence/Competition of AF and SC

CeCu₂Si₂:

- Almost critical slowing down of normal state magnetic response,
 → vicinity to QCP
- Spin excitation gap in sc state
- Analysis of magnetic exchange energy:
 - → evidence for magnetically driven sc

