

High magnetic fields for X ray and neutron scattering

G. Rikken

Laboratoire National des Champs Magnétiques Intenses

CNRS/INSA/UJF/UPS, Grenoble & Toulouse, France

Why high magnetic fields?

How to generate high magnetic fields?

State of the art high field X ray/neutron scattering in high fields Outlook

What I will <u>not</u> talk about

- The physics one can do using high magnetic fields
- Installations using commercial superconducting magnets

Why high magnetic fields ?

1) Manipulating matter:	deflection
'engineering'	levitation
	separation
	alignment

2) Probing matter: the field modifies electronic et magnetic properties:

.

'materials science'

Nuclear magnetic resonance (NMR, MRI) cyclotron resonance, electron spin resonance (ESR) (X)MCD, Hall effect, dHvA effect, SdH effect,....

3) Thermo dynamics; Induce new states of matter:

'basic solid state physics' Low T superconductor normal state Field induced superconductivity Quantum critical points Magnetization plateau states

« High field »

16 Nobel prizes for magnetic field research

 Physics H.A. Lorentz & P. Zeeman: Magnetic effects on radiation Chemistry F. Aston: Mass spectrometer Physics E. Lawrence: Development of the cyclotron Physics O. Stern: Magnetic moment of the proton Physics I. Rabi: NMR of atoms and molecules Physics F. Bloch, E. Purcell: Condensed matter NMR Physics P. Kusch: Measurement of the electron magnetic moment Physics L. Neel: Anti-ferromagnetism, ferrimagnetism Physics Anderson, Mott, van Vleck: Magnetic and disordered systems Physics K. von Klitzing: Quantum Hall effect 1991 Chemistry R. Ernst: 2D and FT NMR Physics Laughlin, Stormer, Tsui: Fractional quantum Hall effect Chemistry K. Wuthrich: NMR of biological macromolecules 2003 Medecine P. Lauterbur, P. Mansfield: Magnetic resonance imaging Physics Fert & Grunberg, Giant magneto-resistance Physics, Geim & Novosolov, Electronic properties of graphene

30 T

1 T

How to generate high magnetic fields for general use?

One solution: circulate a current I in a coil:

 $\mathbf{B} \propto \mathbf{I}$

- **Problem 1**: heating $P \propto RI^2 \propto B^2$
- **Solutions**: superconductors R = 0 ($B < B_{crit}$)
 - cooling: DC fields
 - short current pulse (< 1 s): pulsed field
- **Problem 2**: Lorentz forces $\propto \mathbf{B}\mathbf{x}\mathbf{I} \propto \mathbf{B}^2$
- **Solutions:**
- strong conductor
 - mecanical reinforcement

Why 'resistive' high magnetic fields?

Current maximum B_{crit} for 'technical' superconductors is 23 T!

Limitations of resistive magnets

Mechanical limit :

$$B_{\max} \approx \log \alpha \cdot \sqrt{\mu_0 \cdot \sigma_{\text{UTS}} \cdot \lambda}$$

For Cu: $B_{\max} \approx 35$ Tesla
For steel $B_{\max} \approx 110$ Tesla

Pulsed high magnetic fields

- High magnetic field generation is limited by thermal and mechanical constraints

- By pulsing the field, one is freed from the thermal constraints and has larger design freedom.

-For pulsed fields, \mathbf{B}_{max} is basically limited by the ultimate tensile strength of the conductor. For a given field, the maximum **pulse duration** is determined by the electrical conductivity of the wire, the heat capacity of the coil and the electrical energy available.

- The maximum **duty cycle** depends on the cooling power and the *average* power supply

Magnet materials: trade-off strength vs. conductivity

Single shot, destructive pulsed magnetic field generation LNCMI

Single turn single shot installation (previously at Humboldt University);

2 MA, 60 kV

Summary of magnetic fields for research

Large high magnetic field facilities (pulsed and DC)

National High Magnetic Field Laboratory

DC field installation LNCMI Grenoble

24 MW

35 Tesla

300 l/s

HLD: the world's largest high field capacitor bank : 50 MJ, 5 GW

Technical state of the art

DC magnets: USA: 45,5 T (NHMFL, hybrid*)

Japan: 38,9 T (TML, hybrid) Europe: 35 T (LNCMI, 43 T hybrid under construction)

Pulsed magnets: USA: 100,7 T (NHMFL)

Europe: 95 T (HLD) Japan: 86 T (ISSP) China: 85 T (WHMFC) France: 82 T (LNCMI)

(*hybrid: resistive inner coil, superconducting outer coil)

Size versus stamina

Experimental complications (pick-up, eddy currents) $\propto (\partial B/\partial t)^2$

Signal-to-noise scales with (pulse duration)^{1/2}

The European players

HLD Dresden

HFML Nijmegen

LNCMI Grenoble

EuroMagNET2: joint user acces program LNCMI-HLD-HFML

2009-2012: 1100 access requests

Project ESFRI ' European Magnetic Field Laboratory' (EMFL)

Ultimate aim: offer European scientists the same possibilities as in the USA

- Improve the efficiency of the 4 European facilities (LNCMI-G&T, HLD, HFML) through collaboration, specialization and coordination.

- Increase the financial and human resources of the 4 European infrastructures

The EMFL FP7 Preparatory Phase Project:

Identify legal and governance structure

Funding of investments and operation, staffing

Extension of the EMFL with other partners

Roadmap for the technical and scientific evolution of the EMFL

Prototyping of new magnets/equipment

.

European Magnetic Field Laboratory

Ready-to-sign founding contract

(Starting date 1/1/2011, duration 3 years)

State of the art high field X ray/neutron scattering in high fields

Specificity of all scattering experiments

Acces for incoming and outgoing beam

Relative orientation \mathbf{k}_{i} , \mathbf{k}_{o} , and \mathbf{B}

Sensitive to vibrations

Specificity of neutron scattering experiments

Large sample volumes — Huge magnets or low fields

Long data acquisition times

Pulsed fields of limited use

Huge electricity bill for resistive magnets

Magnet geometry and its limitations

1) $\mathbf{k}_{i} \parallel \mathbf{k}_{o} \parallel \mathbf{B}$ (eg. XMCD, SAXS, SANS): standard solenoid, $\mathbf{B}_{max} = \mathbf{B}_{uts}$

2) \angle (**B**, **k**_o), \angle (**B**, **k**_i) < 30°(eg. MAXS): conical solenoid, B_{max} \approx 0,9 B_{uts} **3) k**_o \perp **B**, **k**_i \perp **B**: split coil, B_{max} \approx 0,7 B_{uts}

4) Any other geometry: difficult, $B_{max} \le 0.5 B_{uts}$??

LNCMI

Vibration sensitivity

-Cooling water vibrations for resistive magnets: under control -Coil vibrations for pulsed magnets: getting better

Alternative strategie for vibration « control »

Short pulses: measurement is over before any vibration hits the sample!

Duty cycle of pulsed fields

- Duty cycle of standard pulsed magnets $\approx 10^{-5}$, too low for many experiments!
- Duty cycle is limited by cooling rate at low values, and by average power at high values
- Increase duty cycle by introducing cooling *n* channels; gain $(n+1)^2$

Magnet lifetime issues

Because of the large stresses, the lifetime of a resistive/pulsed magnet is finite

DC resistive magnets have lifetimes of several 1000 hours, and a soft failure mode (resistance increase, noise, field factor reduction)

Pulsed magnets have typical lifetimes of 500 shots at 95% of the design field. Lifetime seems independent of pulse duration. Failure mode is usually soft, but sometimes violent.

1 Hz LANSCE design

Sample environment

Resistive magnets offer almost the same possibilities in terms of high pressure, low temperatures as SC magnets. Only T < 30 mK is difficult because of field noise.

Pulsed magnets are somewhat more limiting; temperatures down to 50 mK and pressures up to 10 GPa have been realised in 60 T solenoids.

10 GPa DAC, 60 T

(Millot et al, High Pressure Research 28, 627 (2008))

LNCMI

NHMFL-Tallahassee scattering magnet

25T, 28 MW split coil Operational since june 2011

 $4 x 45^{\circ} x 10^{\circ}$ ports

However, no X rays, no neutrons!

IMSL scattering magnets used at Spring 8 and JPARC

40 T, rapid cooling split coil

40 T, small angle scattering magnet

(courtesy of prof. K. Kindo)

APS scattering magnets

30T pulsed split-pair dual-cryostat magnet

30T solenoid for single-crystal diffraction

Developped in collaboration with prof. Nojiri (IMR-Tohoku)

Courtesy of dr. Z. Islam - APS

LNCMI scattering magnets used at ILL, ESRF, SLS, SOLEIL

30 T split coil

LNCMI

30 T WAXS coil, > 750 shots!

40 T long pulse rapid cooling

Other scattering magnets

IMR-Tohoku pulsed magnets; H. Nojiri, next speaker ESRF pulsed field system; C. Strohm, Thursday 9h45 HZB series connected hybrid; A. Tennant, Thursday 11h ISIS pulsed field system; P. Manuel, Thursday 15h

Outlook for X ray and neutron scattering in high magnetic fields

Magnet side:

High Tc superconducting magnets

Resistive magnets

Hybrid magnets

Pulsed magnets

Beam side:

Adapted beam optics, instrumentation and detectors

High T_c superconducting magnets

Commercial HTc cables are now available:

- High price (100 €/m)

- Moderate UTS: 700 MPa for YBaCuO tapes, much less for BiScO wire
- Limited availability
- Quench protection problematic

State of the art high T_c superconductor prototype

NHMFL 32 T HT_c magnet project

4 M€, 4 years development

EXAMPLE 1

User magnet operationnal 2014!

And more to come:

30 T HTc conical design

Resistive magnets for scattering

- Resistive magnet technology (Polyhelix/Bitter) is mature up to 35 T, room for improvement up to 40T, flexible, with rapid turnaround.

- A 30 T all SC magnet will cost 10 M€, a 30 T resistive magnet 1 M€
- Large initial investments are needed in power supply and cooling (15 M€)
- Operating costs are high (1000 h = 20 GWh = 1 M€)

Bitter plates

Poly-helices

Dedicated LNCMI coil designs for scattering experiments

CONNECTING LOCAL SUPERPOWER SYSTEMS FOR USERS

NHMFL hybrid magnet designs for scattering

25 T, 4 MW HZB/NHMFL series connected hybrid operationnal mid 2014, 9 M\$

Possible upgrades:

30T all SC, with HTc insert

30 T with 8 MW resistive insert

30 T, SNS/NHMFL series connected hybrid design

Pulsed magnets for scattering

- Higher field (80+ T) through better materials & design and more energy
- Longer lifetime at current maximum fields
- Longer pulses for better data acquisition
- Higher duty cycle through polyhelix technology ($\approx 10^{-3}$)

Next generation mobile pulsed field installation: more energy

6 MJ, 24 kV in 2 x 20 foot sea containers \rightarrow 80 T anywhere, 100+ T in Toulouse

(under construction, available Feb. 2013)

Materials development for high field magnets

Conductors: better conductivity-strength trade-off:

Reinforcements:

material	UTS (GPa)
Maraging steel	2,7
Zylon	5,5
graphene	130 !!

Conclusion

-High magnetic fields for X ray and neutron scattering are now rapidly developping

-There is still a big development potential

Acknowledgements

M. Bird, K. Kindo and Z. Islam for providing slides

J. Beard, F. Debray, F.Duc, X.Fabrèges, P. Frings for helpful discussions

