Structure and magnetic alignment of self-assembled rod-coil molecular aggregates

Giuseppe Portale

Beamline scientist @ BM26B European Synchrotron Radiation Facility (ESRF) Netherlands Organization for Scientific Research (NWO)

SYNEMAG - Grenoble October 17-19, 2012

Soft matter manipulation via magnetic field

Anisotropic diamagnetic molecules in B:

$$\begin{cases} m_{\perp} = \frac{\chi_{\perp} + B}{\mu_0} \implies E = -\frac{\chi_{\perp} + B}{2\mu_0} B^2 \\ m_{\parallel} = \frac{\chi_{\parallel} V \cdot B}{\mu_0} \implies E = -\frac{\chi_{\parallel} V}{2\mu_0} B^2 \end{cases}$$

$$\Delta E_{an} = -\frac{\left(\chi_{\parallel} - \chi_{\perp}\right)V}{2\mu_0}B^2 = -\frac{\Delta\chi V}{2\mu_0}B^2$$

The Physics of Liquid Crystals, P.G. de Gennes

Magnetic Field induced alignment

Requirement:

$$\frac{\Delta \chi}{2\mu_0} B^2 \ge k_B T$$

Textbook example: Benzene molecule

 $\Delta \chi = -750 \times 10^{-12} \text{ m}^3/\text{mol}$ $\Delta E_{an} = 10^{-5} \text{ k}_{\text{B}}\text{T} (20 \text{ T}, 300 \text{ K})$ \bigcup Too small for single molecule alignment

Liquid crystals, macromolecules, polymers, molecular aggregates (N | $\Delta \chi$ | H² > k_BT)

G. Maret and K. Dransfeld (1985)

Orientation of Non-Magnetic Materials in a Magnetic Field

_

- Most molecules have a diamagnetic anisotropy, $\Delta \chi$
- For non-interacting molecules: $|\Delta \chi| H^2 << k_B T$

Orienting energy << thermal energy Weak orientation

has uses in the study of solutions:

- flexibility of polymers
- onset of cooperativity (liquid crystals)
- solution properties (ionic solutions)

When N molecules behave in unison their Δχs can addition giving a combined anisotropy:

 $N |\Delta \chi| H^2 > k_B T$

Orienting energy > thermal energy High orientation M > 10¹⁰ Daltons (H=10 T)

Can dramatically transform:

information

properties

High orientation requires cooperativity: large, ordered assemblies such as crystals, liquid crystals and semi-rigid polymers

Several materials can be aligned

Liquid crystals	de Gennes, The physics of liquid crystals
Polymers	Kimura, Polymer Journal ('03) ,
LC Polymers	Anwer, Polymer ('91, '93), Benicewicz, Macromol. ('98), Boamfa, PRL ('03),
Phospholipids	Tenforde, J. Th. Bio. ('88), Ozeki, J. Phys. Chem. ('00),
Nucleic acids	Maret, Phys. Rev. Lett. ('75),
Bacteriophages	Torbet, J. Mol. Biol. ('79); Banner, Nature ('81),
Fibrin	Torbet, Nature ('81);
Collagen	Torbet, Biochem. J. ('84); Tranquillo, J. Cell Sci. ('93),
Tubulin	Bras, Biophys. J. ('98);
Carbon nanotubes	Smith, APL ('00), Hone, APL ('00), Choi, JAP ('03), Garmestani, Adv. Mat. ('03)
Protein Crystals	Wakayama, J. Cryst. Growth ('01),
Dye aggregates	Shklyarevskiy, J. Chem. Phys. ('02),

Review: G. Maret and K. Dransfeld (1985)

Self-Assembly of thiophenes

`0'

Coil – Rod – Coil molecule

Controlling Chemical Self-Assembly

Prof. Bert Meier Group – TU/e

Schenning et al., J. Am. Chem. Soc. 124, 1269 (2002)

Purity of T6- β R

GPC

Sample A: 99.6 % Sample B: 99.9 % Sample C: 99.9+ %

T6-βR

Janus Leenders

Sharp peak at 4.8 nm related to internal structure

In-situ birefringence setup

and size dependence

T6/Butanol

 (\mathbf{L})

4 Tesla Helmholtz coils on Xmas beam line

T6/butanol aggregates in magnetic field (B \perp X-rays)

S-to-D ~ 1.5m

- diffraction ring transforms into diffracted "spots" (arks)
- molecules "highly" oriented perpendicular to the field

S-to-D~8m

- strong anisotropy mainly in the horizontal scattering direction (perpendicular to the field)
- Aspect ratio from Porod ~ 7

T6/butanol aggregates in magnetic field (B \perp X-rays)

T6/Butanol

Langmuir 25, 1272 (2009)

2T

8 m

1.5 m

 \leftarrow

X-rays

В

$$\Lambda$$
 = 72.4 nm \rightarrow 15 T6 layers

15.3 lamellar layers (l₁ = **3.2nm**, l₂ = **1.6nm**)

Optical confirmation (sample aged for 3 months)

In-situ confocal microscopy

Peptide nanofibers

Porphyrin nanofibers

Magnetic deformation of T6 nanocapsules

Deformed T6/isopropanol vescicles

Aligned T6/Butanol cylinders

planes

B-Field

Poly(2,5-di(2'-ethylhexyloxy)-1,4-phenylene vinylene)-b-polyisoprene

Rod - Coil

T_{ODS} = 115 °C Smectic phase above 60 °C

McCullock et al. Macromolecules (2011)

Application of magnetic field stabilizes the smectic phase, extending its T-range of existence

Conclusions

 Manipulation of soft-matter coupled with SAXS/WAXS helps in understanding complex structures

• Could be used to control orientation in devices from advanced functional materials (π -cojugated structures)

• Pulsed (high) magnetic fields coupled with XFELs may help solving structure of single molecules (i.e. proteins, small aggregates etc.)

Acknowledgments

BM26@ESRF

Wim Bras Dirk Detollenaere Florian Ledrappier

Peter Christianen Jereon Gielen

Paul Thompson Simon Brown Laurence Bouchenoire

Bert Meijer Albert Schenning Martin Wolffs

Fibrin, the core scaffold of blood clots, is involved in hemostasis, wound repair & pathalogical thrombi

Human blood plasma clot assembled in 7 T

X-ray diffraction of Fibrin assembled in 12T magnet

d = 22nm

Why magnetic orientation: The near perfectly aligned gels means that all fibers are simultaneously stretched to the same degree.

Why stretch: Fibrin is subjected to different degrees of tensile stress: in the short term, by platelet induced contraction during clot consolidation, and cell traction, during wound repair, &, in the long term, by the shear caused by blood flow round pathological thrombi.

Human platelet free plasma clot assembled in 12 T

Stretching device in a water saturated atmosphere & Xrayed (BM26, DUBBLE)

Forced unfolding of fibrin

• The initial half-stagger axial repeat is only stretched by about 5% when it disappears at an extension, $\varepsilon \approx 40\%$.

• A new Bragg peak appears $\varepsilon \approx 20\%$ belonging to a different lattice, indicating the formation of a new ordered transition state which lingers beyond $\varepsilon = 40\%$.

• On relaxation clots stretched beyond 40% recover to their original length giving axial diffraction again but, surprisingly, the repeat is shorter than the initial value. The structure of stretched relaxed samples is different and the difference increases with the number of stretch-relaxation cycles and the maximum value of ε experienced. After stretching to ε =200% a Bragg spacing of only 18nm was recorded.