

Neutron Scattering from Quantum and Frustrated Spin Chains

Martin Mourigal

Institute for Quantum Matter

FUNDED BY

Johns Hopkins University, Baltimore, USA

SYNEMAG Workshop, Grenoble, October 2012

JOHNS HOPKINS

Outline

<u>Framework:</u> (Quasi-) 1D Heisenberg quantum (S = 1/2) spin chains

1. Motivation

2. Frustrated ferromagnetic chains in LiCuVO₄

M. Mourigal, *et al.*, PRB **83**, 100409(R) (2011) M. Mourigal, *et al.*, PRL **109**, 027203 (2012)

3. Frustrated chains in powder-sample of LiCuSbO₄

S. Dutton *et al.*, PRL **108**, 187206 (2012) M. Mourigal *et al.*, *work in progress*

Outline

<u>Framework:</u> (Quasi-) 1D Heisenberg quantum (S = 1/2) spin chains

1. Motivation

1.1 Edge-sharing cuprate chains

Jahn-Teller distorted CuO_6 octahedral J₁ can be F or AF ($\phi \sim 90^\circ$), J₂ is AF LiCu₂O₂, LiCuSbO₄, Rb₂Cu₂Mo₃O₁₂, ...

1.1 Edge-sharing cuprate chains

Chains along *b*, symmetric struc. $J_1 = 1.6 \text{ meV (F)}, J_2 = 5.60 \text{ meV (AF)}$

Weak interchain interactions $J_5 = 0.40 \text{ meV} (AF)$

Néel ordering at $T_{\rm N}$ = 2.4K

Jahn-Teller distorted CuO_6 octahedral J₁ can be F or AF ($\phi \sim 90^\circ$), J₂ is AF LiCu₂O₂, LiCuSbO₄, Rb₂Cu₂Mo₃O₁₂, ...

LiCuVO₄ Imma

See: La Fontaine et al., Acta Cryst. '89 | H.-J. Koo et al. Inorg. Chem. '11 | Enderle et al. EPL '05

See: Chubukov, PRB '91 | Vekua et al., PRB '07 | Hikihara et al., PRB '08 | Sudan et al., PRB'08

See: Chubukov, PRB '91 | Vekua et al., PRB '07 | Hikihara et al., PRB '08 | Sudan et al., PRB'08

See: Chubukov, PRB '91 | Vekua et al., PRB '07 | Hikihara et al., PRB '08 | Sudan et al., PRB'08

See: Chubukov, PRB '91 | Vekua et al., PRB '07 | Hikihara et al., PRB '08 | Sudan et al., PRB'08

Outline

2. Frustrated ferromagnetic chains in LiCuVO₄

M. Mourigal, *et al.*, PRB **83**, 100409(R) (2011) M. Mourigal, *et al.*, PRL **109**, 027203 (2012)

(ILL, Grenoble)

M. Enderle B. Fåk

B. Fåk (CEA, Grenoble) (

R. Kremer (Max-Planck, Stuttgart)

J. M. Law (Max-Planck, Stuttgart)

A. Prokoviev (Vienna)

A. Schneidewind (Munich)

A. Hiess (ESS, Lund)

2.0 Magnetization curve of LiCuVO₄

Can quadrupolar-nematic phases be observed ?

What is the effect of quasi-1Dness?

2.0 Magnetization curve of LiCuVO₄

See: Banks et al., JPCM'07, Svistov et al., JETP Letters'11 (Pulsed 50T, KYOKUGEN, Osaka University)

2.0 Magnetization curve of LiCuVO₄

See: Banks et al., JPCM'07, Svistov et al., JETP Letters'11 (Pulsed 50T, KYOKUGEN, Osaka University)

2.1 Below $H_0 = 8T$

Dipolar <u>long-range</u> order

Model spin-cycloid $T_{\rm N}$ =2.4 K

Ferroelectric behavior

2.1 Below $H_0 = 8T$

Dipolar <u>long-range</u> order

Model spin-cycloid $T_{\rm N}$ =2.4 K

- Ferroelectric behavior
- Fractional spin-excitations

See: Gibson et al., Physica B'04 | Mourigal et al. PRB'11 | Enderle et al. PRL'10

2.1 Below $H_0 = 8T$

Dipolar <u>long-range</u> order

Model spin-cycloid $T_{\rm N}$ =2.4 K

- Ferroelectric behavior
- Fractional spin-excitations

See: Gibson et al., Physica B'04 | Mourigal et al. PRB'11 | Enderle et al. PRL'10

2.2 Magnetization curve of LiCuVO₄

See: Banks et al., JPCM '07, Svistov et al., JETP Letters '11

2.2 Magnetization curve of LiCuVO₄

See: Banks et al., JPCM '07, Svistov et al., JETP Letters '11, Buttgen et al. PRB '07, '10, '12 | Masuda et al. JPSJ '11

*1. Dipolar spin correlations <u>become short-ranged</u>

*1. Dipolar spin correlations <u>become short-ranged</u>

bc-plane, $Q = (0,1,1) - k_{IC}$

*1. Dipolar spin correlations <u>become short-ranged</u>

bc-plane, $Q = (0,1,1) - k_{IC}$

*1. Dipolar spin correlations <u>become short-ranged</u>

bc-plane, $Q = (0,1,1) - k_{IC}$

*1. Dipolar spin correlations <u>become short-ranged</u>

bc-plane, $Q = (0,1,1) - k_{IC}$

1. Dipolar spin correlations <u>become short-ranged</u>

20

0.85

0.9

0.95

1

h (r.l.u.)

1.05

ab-plane, $Q = (1,1,0) - k_{\rm IC}$

Instruments: PANDA, FRM-II, Munich and IN14, ILL, Grenoble with 15T magnet

1.1

1.15

*1. Dipolar spin correlations <u>become short-ranged</u>

Instruments: PANDA, FRM-II, Munich and IN14, ILL, Grenoble with 15T magnet

✤ 1. Dipolar spin correlations <u>become short-ranged</u>

<u>Dipolar</u> correlations are <u>short-range</u> in all directions above H_Q at 100 mK

Integrated intensity is conserved

Instruments: PANDA, FRM-II, Munich and IN14, ILL, Grenoble with 15T magnet

***** 1. Dipolar spin correlations <u>become short-ranged</u>

 $\xi_a \sim 70 \text{ nn}, \ \xi_b \sim 700 \text{ nn}, \ \xi_c \sim 6 \text{ nn}$

<u>Abrupt broadening</u> at $H_{\rm O}$

<u>Dipolar</u> correlations are <u>short-range</u> in all directions above H_Q at 100 mK

Integrated intensity is conserved

***** 2. <u>Field-dependence</u> of dipolar correlations

See: Vekua *et al.*, PRB'07, Sato *et al.*, PRB'09. <u>Magnetization curve</u>: Svistov *et al.*, JETP Letters '11 T = 1.3 K

***** 2. <u>Field-dependence</u> of dipolar correlations

LR
$$\tilde{k}_{\rm IC} = 1/4 - \delta$$

SR $\tilde{k}_{\rm IC} = 1/4 - m/2$

See: Vekua *et al.*, PRB'07, Sato *et al.*, PRB'09. <u>Magnetization curve</u>: Svistov *et al.*, JETP Letters '11 T = 1.3 K

***** 2. <u>Field-dependence</u> of dipolar correlations

LR
$$\tilde{k}_{\rm IC} = 1/4 - \delta$$

SR $\tilde{k}_{\rm IC} = 1/4 - m/2$

Magnon-pairs in the ground-state

See: Vekua et al., PRB'07, Sato et al., PRB'09. <u>Magnetization curve</u>: Svistov et al., JETP Letters '11 T = 1.3 K

✤ 2. <u>Field-dependence</u> of dipolar correlations

See: Vekua *et al.*, PRB'07, Sato *et al.*, PRB'09. <u>Magnetization curve</u>: Svistov *et al.*, JETP Letters '11 T = 1.3 K

***** 2. <u>Field-dependence</u> of dipolar correlations

See: Vekua *et al.*, PRB'07, Sato *et al.*, PRB'09. <u>Magnetization curve</u>: Svistov *et al.*, JETP Letters '11 T = 1.3 K

***** 3. <u>Spin components</u> involved in short-range correlations

Polarized neutrons, vertical field, 50 mK

***** 3. <u>Spin components</u> involved in short-range correlations

2 T

Polarized neutrons, vertical field, 50 mK

Η

***** 3. <u>Spin components</u> involved in short-range correlations

H

Polarized neutrons, vertical field, 50 mK

$$\sigma_{\mathrm{NSF}}, \| \mathbf{H} ot \mathbf{Q} \|$$
 Out-of-plane

***** 3. <u>Spin components</u> involved in short-range correlations

***** 3. <u>Spin components</u> involved in short-range correlations

***** 4. Phase-transition evidenced above H_0

Measurement: J. M. Law and R. K. Kremer, MPI Stuttgart

***** 4. Phase-transition evidenced above H_0

Measurement: J. M. Law and R. K. Kremer, MPI Stuttgart

***** 4. Phase-transition evidenced above H_0

Indication for a thermal <u>phase transition</u> above H_0

Measurement: J. M. Law and R. K. Kremer, MPI Stuttgart

2.2 Summary of our findings

- *****Below H_Q
 - 1. <u>Dipolar long-range</u> order related to <u>vector-chiral order</u>
 - 2. Incommensurate <u>spin components perpendicular to H</u>
- $\clubsuit \text{Above } H_{Q} \sim 8 \text{ T}$
 - 1. <u>Short-range dipolar</u> correlations in all directions
 - 2. Driven by <u>quadrupolar-nematic</u> correlations
 - 3. Only involve <u>spin components parallel to H</u>
 - 4. Thermal <u>phase transition</u>

2.3 Magnetization curve of LiCuVO₄

See: Banks et al., JPCM '07, Svistov et al., JETP Letters '11

2.3 Quadrupolar long-range order

*****Quasi-1D system with <u>frustrated interchain interactions</u>

See: Zhitomirsky and Tsunetsugu, EPL '10

2.3 Magnetization curve of LiCuVO₄

See: Banks et al., JPCM '07, Svistov et al., JETP Letters '11

2.3 A Possible Scenario above H_0 =8T

***** Role of <u>frustrated</u> inter-chain interactions

$$J_1$$
= -1.6 meV
 J_2 = +5.6 meV
 J_5 = -0.4 meV

Enderle et al., EPL '05

... Qualitative picture using solitons (fermions) ...

Role of <u>frustrated</u> inter-chain interactions H = 0

Quantum Fluctuations: 2-soliton + 2-soliton

Furukawa et al., JPSJ '08

Role of <u>frustrated</u> inter-chain interactions H = 0

2-soliton + 2-soliton

A 2-soliton is bound together by FM J_1

Role of <u>frustrated</u> inter-chain interactions H = 0

Bound 4-soliton

Role of <u>frustrated</u> inter-chain interactions H = 0

In *H*=0, long-range dipolar and vector-chiral orders are preserved

2-soliton bound by <u>intra-chain</u> J1 \rightarrow vector-chiral order

4-soliton bound by <u>inter-chain</u> $J_5 \rightarrow$ long-range dipolar order

***** Role of <u>frustrated</u> inter-chain interactions $H > H_0$

2-soliton + 2-soliton

Role of <u>frustrated</u> inter-chain interactions <math>H > H_0

In $H > H_O$ long-range dipolar order is <u>not favored</u>

Role of <u>frustrated</u> inter-chain interactions <math>H > H_0

In $H > H_O$ long-range dipolar order is <u>not favored</u>

However, there is <u>a non-local positional order (</u>"nematic")

Role of <u>frustrated</u> inter-chain interactions <math>H > H_0

In $H > H_O$ long-range dipolar order is <u>not favored</u>

However, there is <u>a non-local positional order</u>

Conclusions

1. Role of frustrated inter-chain interactions

2. Different from dipolar LR below H_0 and quadrupolar LR above H_C