High Field Properties of Uranium Ferromagnetic Superconductors

Collaborators

V. Taufour (present: Ames) H. Kotegawa (present: Kobe Univ.) E. Hassinger (present: Sherbrooke) L. Malone (present: Bristol) T. D. Matsuda (present: JAEA) A. Miyake (present: Osaka Univ.) T. Combier G. Knebel F. Bourdarot L. Howald (present: PSI) M. Taupin J.P. Brison A. Pourret A. Palacio Morales J. Flouquet F. Hardy (KIT) I. Sheikin (LNCMI-Grenoble) C. Paulsen (Institute Néel, CNRS) W. Knafo (LNCMI-Toulouse)

Dai AOKI

CEA-Grenoble, France IMR, Tohoku Univ., Japan

Review paper of FM-SC

D. Aoki and J. Flouquet: JPSJ **81** (2012) 011003

Acknowledgement

A. Buzdin, A. de Visser, K. Deguchi S. Fujimoto, Y. Haga, H. Harima, K. Hasselbach, T. Hattori, D. Hykel, H. Ikeda, K. Ishida, S. Kambe, H. Kusunose, C. Meingast, V. Michal, V. Mineev, K. Miyake, J. Panarin S. Raymond, G. Scheerer, R. Settai, Y. Tada, H. Yamagami

Funding

NewHeavyFermion

CORMAT, SINUS

Outline

Introduction

Heavy Fermion Superconductivity Ferromagnetism & Superconductivity UGe₂, URhGe, UCoGe

Results

FM-QCEP

Re-entrant superconductivity Fermi surfaces

Summary

Magnetism & Superconductivity

New materials open the frontiers of research

3

Number of heavy fermion superconductors (f-electron system)

Heavy fermion superconductors of uranium compounds

Material	T _c (K)	Year of discovery	Number of publication
UPt ₃	0.54	1984	1166
UBe ₁₃	0.9	1984	382
URu ₂ Si ₂	1.5	1986	629
UPd ₂ Al ₃	1.9	1991	452
UNi ₂ Al ₃	1.0	1991	94
UGe ₂	0.7	2000	245
URhGe	0.25	2001	75
Ulr	0.33	2004	22
UCoGe	0.6	2007	16

Transuranium compounds PuCoGa5, PuRhGa5, NpPd5Al2, PuCoIn5, PuRhIn5

ISI web of science (2009)

Early study in 1980s' Competitive phenomena: FM & SC

Theoretical prediction near FM-QCP

SC Cooper pair

Fay & Appel **<u>1980</u>** (PRB 22, 3173)

Coexistence of FM and SC in uranium compounds

small ordered moment (cf. free ion $\sim 3.6 \ \mu_B$ for 5f² or 5f³)

- weak ferromagnets (5f-itinerant)
- strong Ising anisotropy

orthorhombic structure

Curie

High quality single crystals are essential

Very anisotropic H_{c2} of UCoGe

D. Aoki, et al.: JPSJ 78 (2009) 113709

"Re-entrant" SC in ferromagnetic superconductors, UGe₂, UCoGe, URhGe

SC is reinforced by ferromagnetic instabilities **Spin-triplet state** with equal spin pairing $(\uparrow\uparrow \text{ or }\downarrow\downarrow)$

For high Tc

XY-type transverse magnetic fluctuation

H_{c2} and T_c

NMR view

historical view

Field-induced superconductivity in other materials

S. Uji et al., Nature 410, 908 (2001)

Field-induced superconductivity is due to the **Jaccarino-Peter effect** (compensation of the external field by internal exchange field).

Re-entrant superconductivity appears only when *B* is applied in plane (no orbital limit)

historical view

Field-induced superconductivity in other materials

Chevrel phase compound

Why field-reinforced SC appears?

For H // hard-mag. axis $\Delta T_{
m Curie} \propto H^2$ V. Mineev PRB (2011)

FM instability => enhancement of m* => Re-entrant (S-shaped) SC phase

F. Levy et al. Science (2005) A. Miyake et al. JPSJ (2008) D. Aoki et al. JPSJ (2009)

Similarity of the phase diagram

AF-Quantum Critical Point

Magnetic Field can be a tuning parameter for quantum criticality (classically P, doping, ...)

F. Levy et al.

Our crude model

Enhancement of m* stabilizes SC

M (ม_B/U) 0.4 b-axis 0.2 a-axis 0 20 30 10 0 H (T) W. Knafo, et al. submitted, LNCMI-T No anomaly, but... 6 0.35K \mathbf{H}^{*} 0.80K 5 1.20K 2.00K 4 2.90K $S/T(\mu V/K^2)$

UCoGe 1.5 K

0.8

0.6

UCoGe

H // c-axis

40

UCoGe m₀ = 0.05 μ_B

M. Samsel-Czekala et al. JPCM (2010)

heavy, but low carrier numbers

 $arepsilon_{
m F}\sim rac{\hbar eF}{m^*}~$ and Zeeman energy $g\mu_{
m B}\sigma B$

Fermi surface reconstruction in URu₂Si₂

Quantum oscillations in UCoGe

SdH experiments at high field in UCoGe

Field dependence of Freq. and m*

with non-linear response

D. Aoki et al. JPSJ 80 (2011) 013705 LNCMI-G

Anisotropic field dependence of m*

D. Aoki et al. JPSJ 80 (2011) 013705 LNCMI-G

SUMMARY

- FM-QCEP in UGe₂
- Field reinforced SC for H // hard-mag axis (URhGe, UCoGe)
- Suppression of huge H_{c2} with P in UCoGe
- FM fluctuations → feedback to Fermi surface instabilities in UCoGe

