A light for Science

15th ESLS-RF Workshop October 5-6 E.S.R.F.

Accelerator Upgrade

L. Farvacque Accelerator & Source Division

European Synchrotron Radiation Facility

Pascal Elleaume

École Normale Supérieure de Physique (Ulm)

1984: Thesis : «Laser à électrons libres sur l'anneau de collision d'Orsay» (Y. Petroff, Y. Farge) Design of the Super-ACO FEL

- 1986: ESRF: Head of the Insertion Device Group
- 2001 : ESRF: Director of the Accelerator & Sources Division

19/03/2011: Accidental death in the French Alps at 55

Pascal was the initiator of the accelerator upgrade

ESRF Upgrade

A light for Science

European Synchrotron Radiation Facility

- Upgrade of BPM electronics
 - Improvement of the beam position stability
 - Coupling reduction
 - New position feedback
- 6 m long straight sections
 - No change in magnet lattice
 - Canted straight sections
- 7 m straight sections
 - Lattice symmetry breaking
 - New magnets necessary
- Cryogenic in-vacuum undulators
- Diagnostics developments
- New RF Transmitters
- New RF Cavities

Upgrade of BPM Electronics

Sum signal of the 4 buttons:

- Lifetime monitor
- Instant Fractional-Beamloss monitor

Coupling reduction

Achieving lower coupling

- Better resolution of the response matrices

 better model
- New correction method: minimization of Resonance Driving Terms
- Increased number of skew quad correctors: 32 → 64

Down to 3.5 pm

- Maintaining small coupling
 - ID gap variations with magnetic field errors induce varying contributions to coupling (in-vacuum undulators)
 - Local correction of ID magnetic field errors
 - 2 skew quad correctors, lookup table
 - Automatic periodic retuning of the correction

4 pm < ϵ_z < 5 pm on medium term (1 week)

Coupling reduction

Maintaining low emittance during USM: 1 week delivery

New orbit feedback

Present

- Slow feedback: 224 BPMs, 96 steerers, every 30 s
- Fast feedback: 32 dedicated BPMs, 32 dedicated steerers
- The fast feedback uses few monitors and steerers
- The combination of 2 systems is delicate

Future

- Single system from DC to 200 Hz
 - All Libera BPMs
 - All the standard steerers (integrated in the sextupoles) up to 200 Hz
 - New power supplies
 - 10 kHz operation
- Much better correction of the orbit distortion induced by IDs

New orbit feedback

First tests of Fast Orbit Feedback

27/09/2011 224 BPMs / 96 steerers Average over 224 BPMs

Oct 5th, 2011

Qd3

S6

No change in optics New vacuum chambers

- 6 m section no canting
 - Standard
 - ID18, ID24, ID20, ID14
 - With 2.5 m in-vacuum undulator

QF2

- ID6
- 6 m Large Angle canting
 - ID30 (±2.2 mrad)
 - ID16 (±2.7 mrad)

Steerers for Canted Straights

Permanent Magnet Steerers

- Homogeneous field integral
- Low fringe field
- 11 Steerers manufactured
- Magnetic measurements

Steering angles in [mrad]

ID16	-2.70	5.40	-2.70
ID18	-1.2	2.71	-1.51
ID23	-0.75	1.5	-0.75
ID30	-2.2	4.4	-2.2

Canted Section

2.70 mrad End Steerer

ESRF

Canted Beamline Front-End

A light for Science

- New girders
- New quadrupoles
- Individual power supplies
- New vacuum chambers
- 1st symmetry breaking

Goal: Redistribute RF cavities to gain useful straight sections

7 m straight sections

A light for Science

A light for Science

High gradient quadrupoles

- 12 units manufactured by ANTEC
- Needed for 7 m straight sections
- Gradient 26 T/m
- Diameter 66 mm
- Delivered
- Magnetic measurement at ESRF

Cryogenic permanent magnet undulators

A light for Science

25 % Field Increase at given gap and period => Higher brilliance on high energy undulators

Beam Diagnostic Developments

SUM signal : Instant-Partial-Beam-Losses

The sum of the 4 electrodes of an individual BPM is proportional to the beam current. \rightarrow SA-Sum signal of all Liberas \rightarrow precise and fast lifetime measurements

Beam Diagnostic Developments

European Synchrotron Radiation Facility

Oct 5th, 2011

New RF cavities

A light for Science

But while preparing the upgrade...

The priority is still the machine operation:

European Synchrotron Radiation Facility