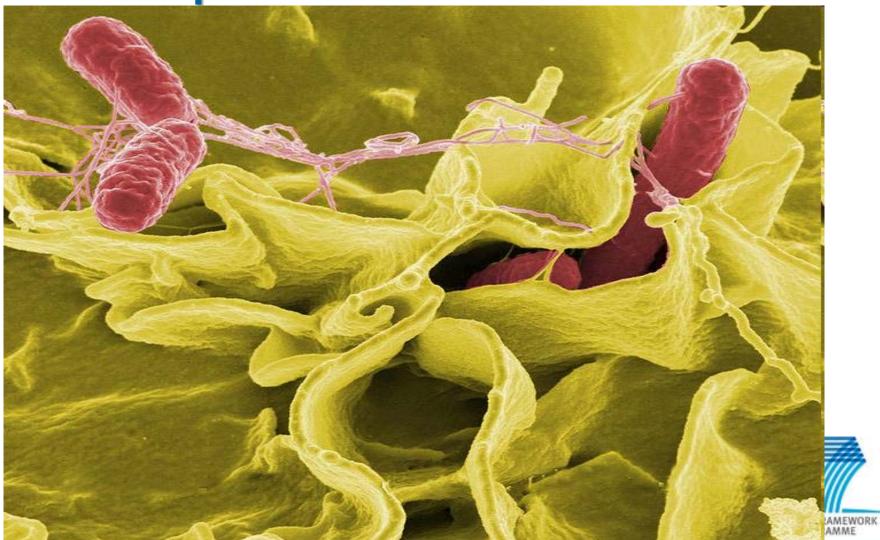


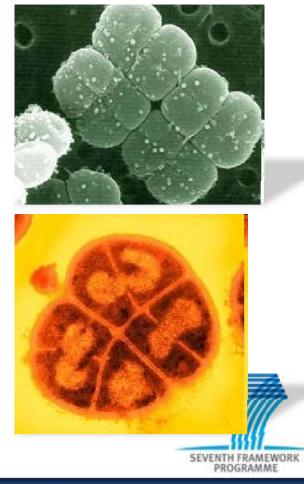
ESRFUP – WP11 Data Management Requirements

The European Light Source Slide: 1


Outline

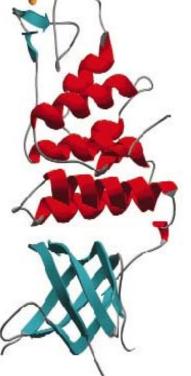
- **1.** Examples of data intensive science
- 2. The ESRF in numbers
- 3. Today's data management @ ESRF
- 4. Infrastructure overview
- 5. ESRF Upgrade and data management
- 6. GRID + data management
- 7. International collaborations
- 8. Conclusion

1. Examples of Data Intensive Science



The European Light Source Slide: 3

Structural Biology of Deinococcus Radiodurans


- a non-pathogenic bacterium extremely resistant to ionising radiation
- > able to withstand up to 15,000 grays of ionising radiation
- D. radiodurans is capable of surviving and repairing hundreds of double strand breaks
- in *E. coli* five double strand breaks are invariably fatal
- D. radiodurans was amongst the first organisms for which the complete genome sequence was made available



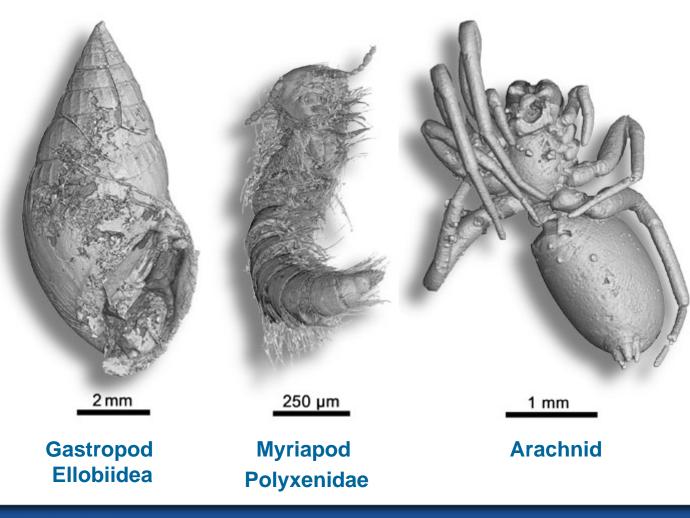
Deinococcus Radiodurans

- The ESRF MX-group has selected protein targets for structural studies
- Targets included proteins involved in DNA-damage repair, desiccation resistance, and oxidative stress response
- 24 structures have already been deposited in the PDB
- Many more will need to be investigated to understand the repair mechanisms.
- MX projects range from 10 to 500 GB, with an average of 100 GB

Examples of protein structures solved from

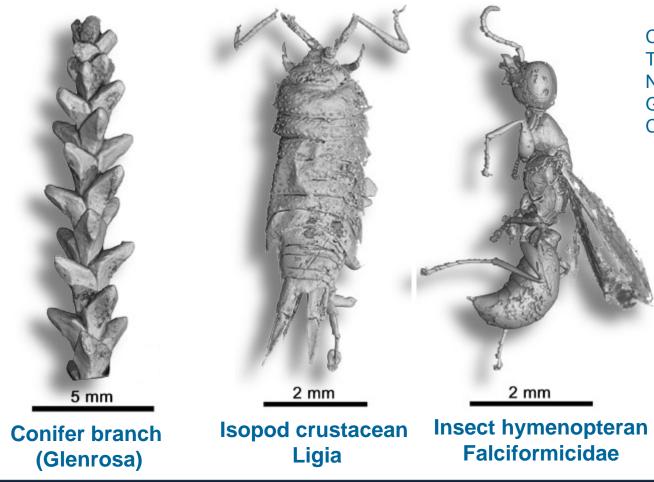
Deinococcus radiodurans.

Credits: D. Hall, I. Leiros, H-K. Leiros, E. Micossi, E. Gordon, S. Macedo, U. Kapp, C. Jamin, J. Timmins, S McSweeney; ESRF


NTH FRAMEWORK PROGRAMME

Propagation Phase Contrast Radiography of opaque amber

Virtual 3D extraction of organisms in opaque amber



Credits: M. Lak, P. Tafforeau, D. Néraudeau (ESRF Grenoble and UMR CNRS 6118 Rennes).

> SEVENTH FRAMEWORK PROGRAMME

Virtual 3D extraction of organisms in opaque amber

Credits: M. Lak, P. Tafforeau, D. Néraudeau (ESRF Grenoble and UMR CNRS 6118 Rennes).

The European Light Source Slide: 8

Toumai – our oldest ancestor?

- Micro tomography phase contrast studies of Toumai (Sahelanthropus tchadensis) reveal the 3D structure of the skull and allows remodeling of missing fragments.
- I scan = volume of 160 x 160 x 200 mm, pixel size of 45 µm = ~ 1*10¹¹ Bytes = ~100 GB
- The raw data set is in the order of 400 GB
- > The processed data represents more than 4 TB.
- Processing has taken several 1000 h CPU time on a 2.2 GHz AMD Opteron system

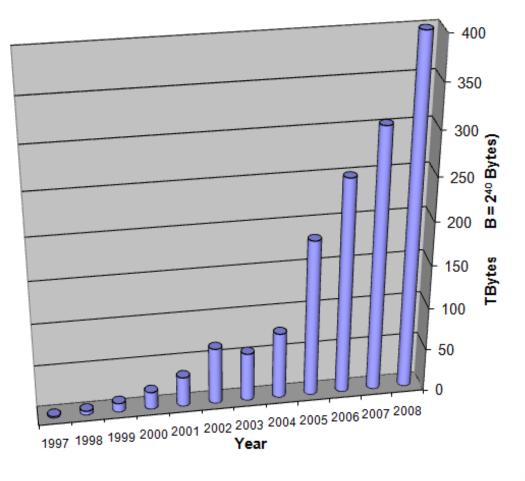
Tomography projects range from 200 GB to 10 TB with an average of 800 GB

European Synchrotron Radiation Facility

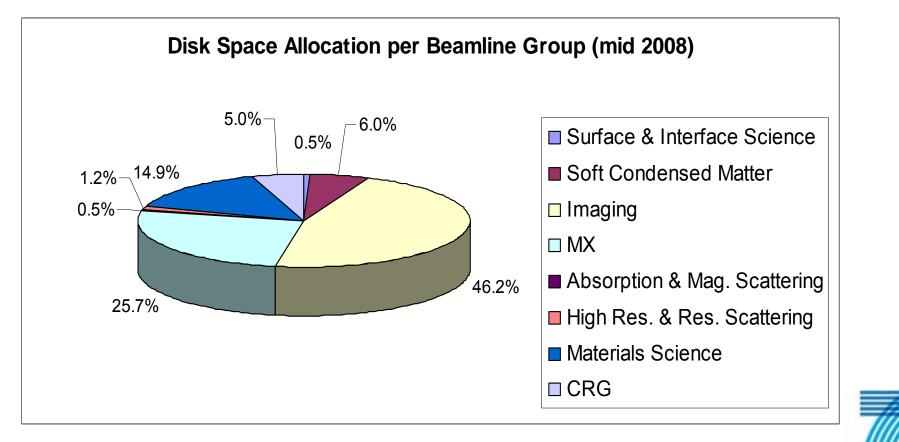
2. The ESRF in numbers

The ESRF in numbers

- 42 Beamlines (31 ESRF, 11 CRGs)
- 6 200 user visits in 2007
- ~7 500 research entities registered in our database
- 2 000 proposals, 900 accepted in 2007
- 15 300 eight hour shifts for experiments in 2007
- >1 800 peer reviewed publications/year
- Two disciplines generate mountains of data
 - Life Science
 - Imaging
- An average of 2 TB/day of data in 2008
- >80 000 000 files in 2008



Evolution of the ESRF data production

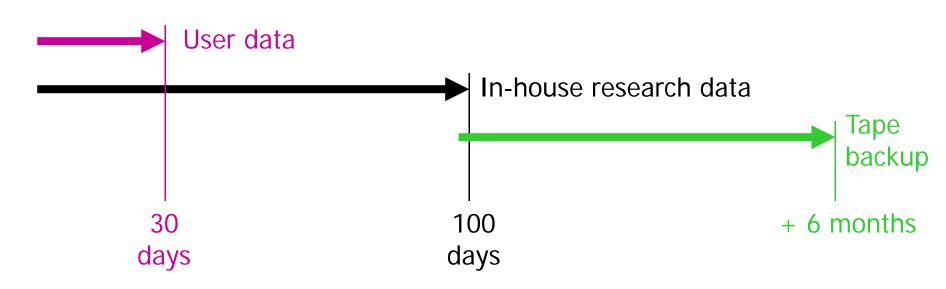

- 12 years → data volume x 400. In 2007: 300TB ~1*10⁸ files, In 2008: ~400TB ~8*10⁷ files
- We managed to provide the necessary network bandwidth, disk space, backup capacity at constant budget
- However, we have doubled the data centre infrastructure (m², kW, cooling)
- Today: ~250 kW, ~300 m²

Yearly Data Creation on NICE

SEVENTH FRAMEWORK PROGRAMME

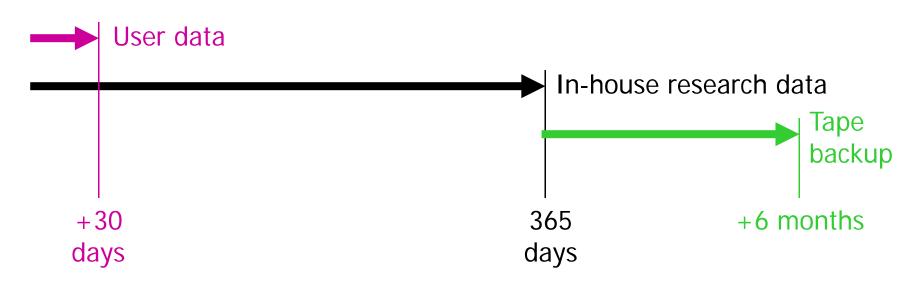
Data Storage – disk space allocation

SEVENTH FRAMEWORK PROGRAMME


3. Data management @ ESRF

The European Light Source Slide: 14

ESRF Storage Policy for Scientific Data



- After 6-9 months data has disappeared from our data centres!
- Archiving of the data is currently left to the users!
- This policy is now under debate.

ESRF Storage Policy for Scientific Data - 2009

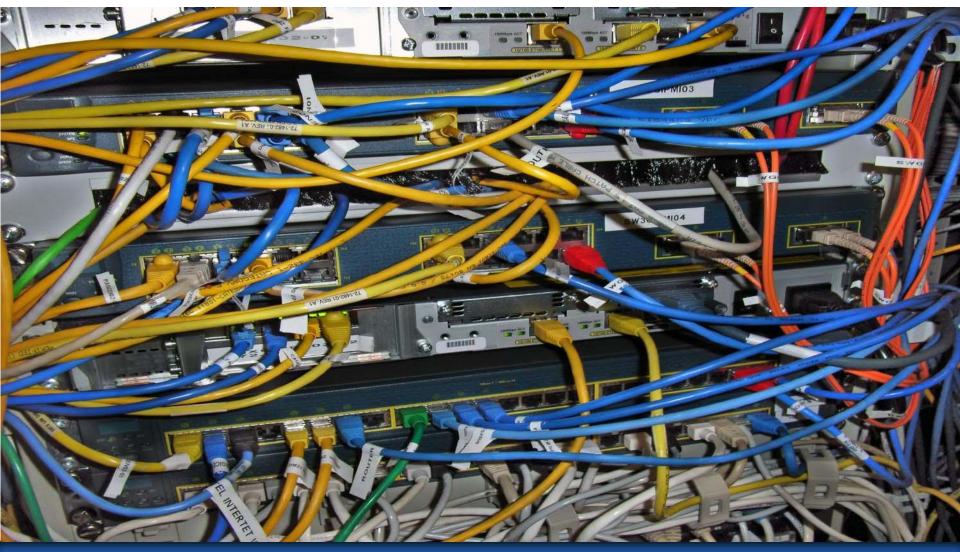
- User data: erased 30 days after departure
- In-house research data: 12 months
- Backup's: + 6 months

What is our current situation?

Many photon laboratories apply similar data policies

Consequence:

- Data remains "private" property of scientists
- No easy network access to data
 - No guarantee that data can be found/read after a few years
- Some scientists are left with an un-manageable problem
- A dramatic loss of data!
- Data analysis can become very difficult
- This situation has let to the FP7 EDNP proposal
- and to the VEDAC proposal



SEVENTH FRAMEWORK PROGRAMME

4. Infrastructure overview

The European Light Source Slide: 18 R. Dimper – Data Management

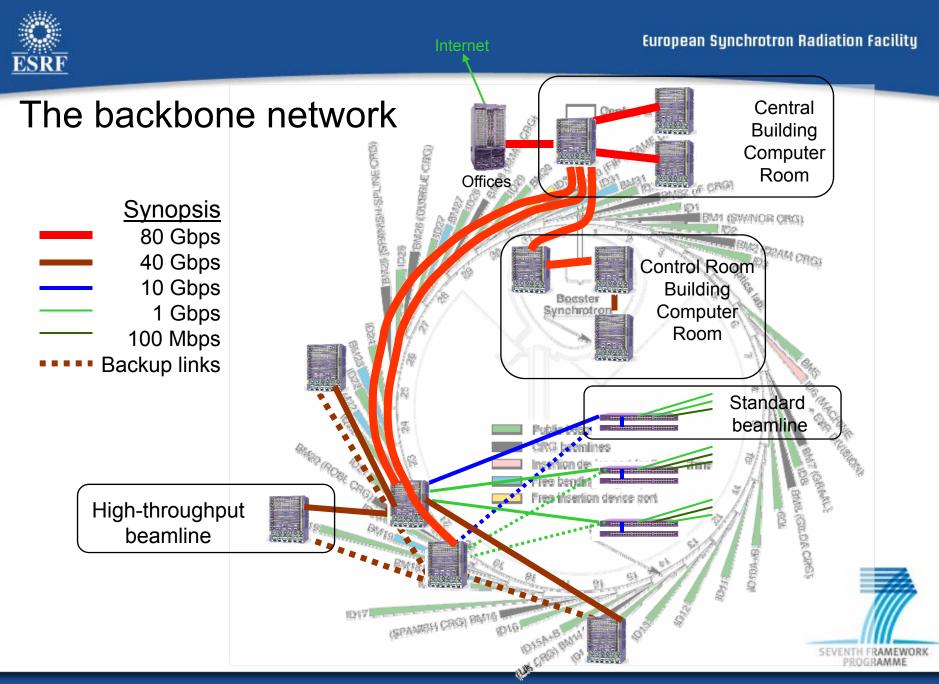
Data Network

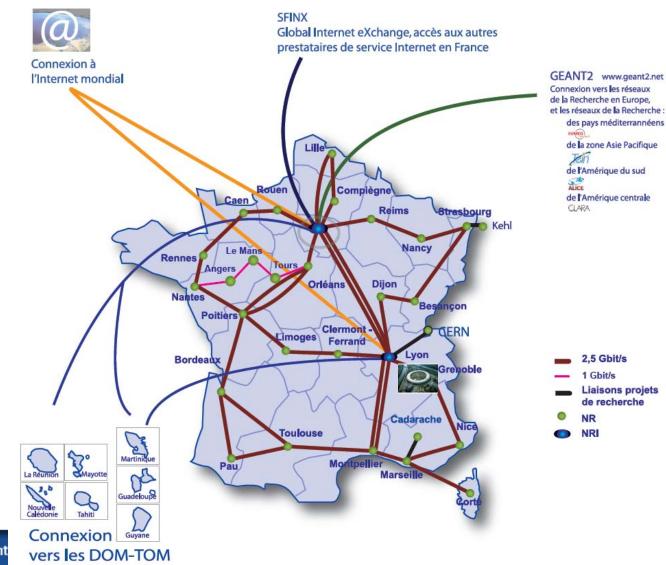

- The LAN is the spinal cord of the laboratory
- Reliability of all components is fundamental

ESRF operates with a class B address:

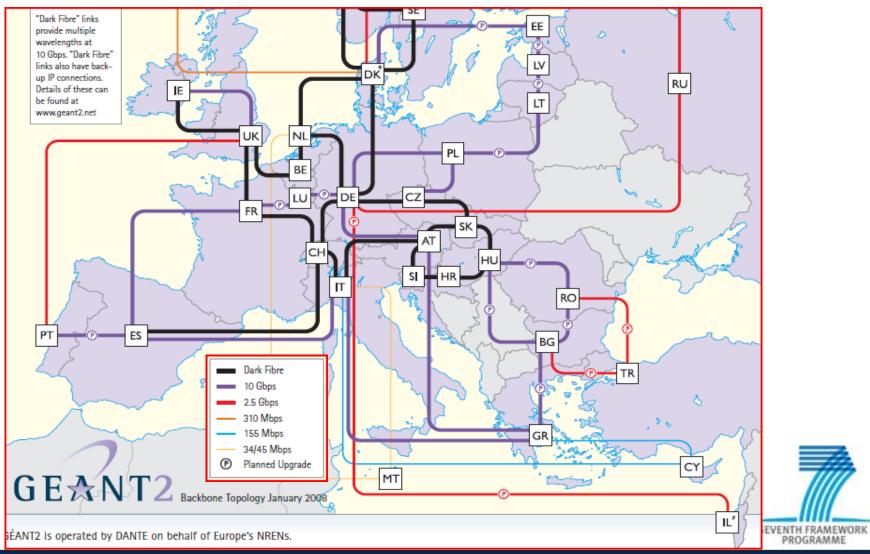
• 160.103.a.b; a=subnet, b=host

Network entirely based on Extreme Network switches:


- BlackDiamond10k and BlackDiamond8k
- Multiple aggregated 10 Gbps backbone links
- Edge devices on the beamlines are Extreme Summit 400-48T switches



ESRF – connected to the world via RENATER


The European Light Slide: 21 per – Data Management

SEVENTH FRAMEWORK

PROGRAMME

GEANT2 network infrastructure

Central Data Storage: NAS systems

- 4 x Network Appliance FC940 cluster
 - Eight controllers, 1GE network attachments
 - 70 TB
- 2 x Network Appliance FAS3050 cluster
 - Eight controllers, 1GE network attachments
 - 140 TB
- 2 x Network Appliance FAS6070 cluster
 - Eight controllers, 10GE network attachments
 - 400 TB

600 TB total disk storage capacity, currently NFS only 75 + 250 MB/s single process NFS read/write performance ~700 MB/s cluster access for data processing

ROGRAMME

Data Storage: Tape Backup

4 x StorageTek L700, 700 slots, 4-10 LTO-2 and LTO-3 tape drives

1 x StorageTek L8500, 3 500 slots, 18 tape drives LTO-3 12 tape drives LTO-4 The L8500 can be extended to >10 000 slots

Software: Quadratec Time Navigator Backup of very large file systems is difficult

R. Dimper - Data Management

SEVENTH FRAMEWORK PROGRAMME

5. The ESRF UP and data management

The European Light Source Slide: 25

The ESRF Upgrade Programme

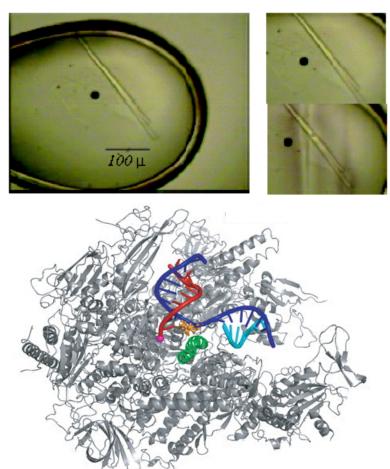
A 290 M€, 10 year programme to keep the ESRF at the forefront of photon science

- Nano-Science
- Biology + Soft matter
- X-ray imaging
- Pump-probe, time resolved
- Extreme conditions

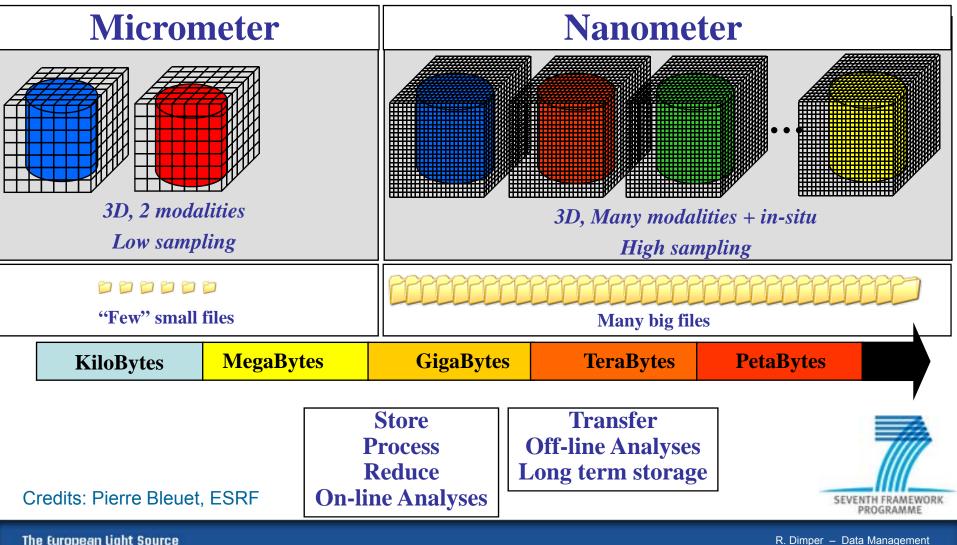
- A vast building programme
- Extended beamlines
- An enhanced X-ray source
- Enhanced instrumentation
- Powerful computing
- The first phase of the Upgrade Programme starts in 2009 and extends over 7 years
- 170 M€ will be invested

Its all about data

Why will the data avalanche become worse?


- 1. Automation
- 2. Remote access
- 3. New methods
- 4. Faster detectors, higher resolution

Screening & Automation for Macromolecular Crystallography


F Brueckner et al. Science , 315, 859-862, 2007

- Available crystals become smaller
- Interesting complexes become larger
- 2007 figures (>150.000 samples tested) expected to increase by more than a factor of 10
- Massif automation and nano beams will substantially increase data volumes

New methods: nanobeams & raster scans

The European Light Source Slide: 29

New Detectors – More Data

Quantuum ADSC Q315

- 6k x 6k pixels = 72 MB/image;
- ½ frame/s = 36 MB/s

Frelon2k

• 16 frames/s = 66 MB/s

Dalsa Pantera TF1M60

60 frames/s = 150 MB/s

Sarnoff CAM512

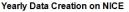
- 512 x 512, 400 frames/s, 200MB/s
- 1k x 1k = 500MB/s

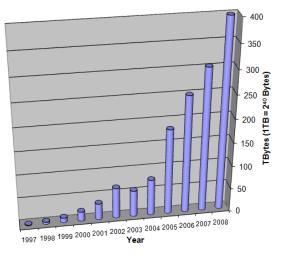
Pixel Detectors

 Very high frame rates, up to 6M pixels, 100 - 1000 MB/s

SEVENTH FRAMEWORK PROGRAMME

How to stay abreast of the data avalanche?


Today the ESRF produces 2 TB/day How much data will the ESRF produce in 5-10 years? If the trend of the last 10 years simply continues, i.e. a doubling of the rate every 18 months:


- In 5 years ⇒ ~ 15 TB/day
- In 10 years ⇒ ~ 120 TB/day, i.e. 25 PB/y

The ESRF Upgrade Programme is likely to accelerate this trend if and when pixel detectors come into the game

CERN LHC = **15 PB/year** once fully operational)

Computing & the ESRF Upgrade

Computing is (and will remain) on the critical path for science at ESRF. We have to make significant progress on two fronts:

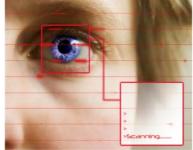
Lower latency ⇒ diminish the time to measure, store, analyse data

- On-line data analysis
- > Network, Storage, and Cluster upgrades
- > Grid

Add functionality ⇒ new ways to measure, store, analyse data

- > On-line and off-line data analysis
- Scientific Management Information System (SMIS), data mining
- Grid, remote access
- Data curation

6. Grid and data management



Grid & Data Management ...or why do we look into Grid technology?

Data Access

Today access to data is granted via generic accounts, e.g. ls2252

- Issues: Computer security, password management, mutual data protection, etc.
- \rightarrow Individual authentication needed

Today remote access to data is complicated

- Issues: Firewalls, encryption, accounts, file locations, etc.
- \rightarrow Access to data must be easy and secure

Grid & Data Management (contd.)

Data transport

Some experiments at ESRF may generate too much data ... to carry away

- Detector: 250MB/s ... USB disk: 10MB/s ...Internet: ?
- \rightarrow Leave some of the data at ESRF?

Data Storage

Some users may not have the resources to store (nor to analyse) the data

 \rightarrow Use Grid storage and compute elements

Grid & Data Management (contd.) ...or why do we look into Grid technology?

Data from cross facility, cross discipline experiments

Merging data sets from several photon labs Merging data sets from neutron and photon labs

- Issues: data formats, metadata description, data access
- \rightarrow Data catalogues, easy data access

Data Preservation

Depositing data securely, curation of data

 \rightarrow A user-friendly interface to data/metadata, browsing of data

7. International Collaborations

The European Light Source Slide: 37

On-going International Collaborations

ESFRI Project ESRFUP

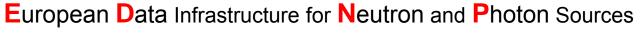
SMIS and GRID work packages

European Data infrastructure for Neutrons and Photons (EDNP)

- Common data format, metadata definition, sustainable data storage, data curation and access, Grid
- FP7 call in progress

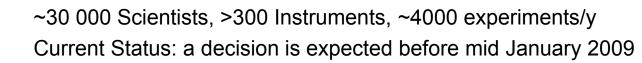
• Virtual European Data Analysis Centre (VEDAC) for photon science

- fast detector read-out, online data analysis
- Project within the SR round-table
- TANGO control system collaboration
 - SOLEIL, ELETTRA, ALBA, DESY, ESRF



FP7 proposal EDNP (Infra 2008-1.2.2)

AUL SCHERRER INSTITUT



NEUTRONS FOR SCIENCE

Sustainable data storage and data management tools to:

- Harmonise data policies in laboratories
- Manipulate large data sets
- Standardise data formats and annotation of data
- Allow transparent and secure remote access to data
- Establish sustainable and compatible distributed data catalogues
- Allow long term preservation of data
- Provide tools/interfaces for curating data
- Provide compatible open source data analysis software

8. Conclusion

The Grid may find its place in photon science for:

- Authenticating users,
- Storing, accessing, browsing data remotely,
- Analysing large data sets,
- Curating data,
- Working together,

if we can make it

user friendly!

European Synchrotron Radiation Facility

Thank you for your attention!

1.1

S MININ

Questions?

The European Light Source Slide: 41 R. Dimper - Data Management