

Real Time Analysis of Advanced Photon Source Data

the globus alliance

www.globus.org

Dan Fraser (ANL)

Director, Community Driven Improvement of Globus Software Brian Tieman (APS)

And a host of others

ESRFUP WP11 Workshop Exploiting the GRID for Synchrotron Radiation Data Analysis Dec 8-9, 2008

Special Thanks

the globus alliance

www.globus.org

Rachana Ananthakrishnan Kate Keahey Raj Kettimuthu Ian Foster Ravi Madduri Mike Papka Gregor von Lazewski

> Francesco De Carlo Konstantin Ignatyev

Outline

- Experiments we are working with at APS that require HPC/Grid Access
- Leveraging Grid & Workflow Technology
 - Databases
 - Workflow
 - Cluster Computing
 - Experiment Integration
 - Security
- High Level Architectures
- Areas for Collaboration

Tomography Characteristics

- High Throughput—A Data Factory
 - ~100 samples per day

www.globus.org

- Processes >1 TB/day
- Requires local (APS) processing power
 - ~16 cores process one "Standard" sample in < 1 hour
 - ~64 cores to keep up with peak demand
- Well Automated

- Well defined dashboard
 - GUI for control/acquisition
 - GUI for reconstruction/experimental feedback
- Mail in samples possible
 - Not enough beamline support to be practical
 - Possible to use remote access through services
- Runs at multiple beamlines

3D X-Ray Diffraction Microscopy Characteristics

Modest data rates

the globus alliance

- 100GB/day acquired reduces to <10MB
- Local APS processing power for data reduction step
 - 8 cores(?) to keep up with demand
- Reconstruction step is CPU intensive
 - Requires large (non-APS) clusters
 - Single plane of sample takes ~24 hours on 68 processors (APS cluster Orthros)
 - 300 planes per day
 - Happily parallelizable to > 1000 cores
 - Requires tight integration of remote resources into operations of experiment
- Not well automated (yet)
 - Users required to be here (setup, sample changes)
 - Setup
 - Sample Changes

X-Ray Photon Correlation Spectroscopy

• High data rates

- >1TB/day acquisition possible
- Online acquisition compression can reduce by 80%
- Requires local APS processing power
 - Online data reduction with very low latency
 - < 16 cores
 - Further reduces data to <1GB
- Partially automated
 - Acquisition well automated with SPEC
 - Data reduction not automated
- Real Time analysis could really benefit XPCS
 Unsure when enough statistics have been acquired

Microdiffraction Characteristics

- High Throughput—Potential Data Factory
 - New hardware purchase

the globus alliance

- 3 detectors capable of 15 FPS at 4MPixel
- 32 cores to add to Orthros
- 10Gb ethernet to connect beamline to cluster
- More data to come...

HPC/Grid Topics

- Databases (sample tracking)
- Workflow

www.globus.org

- Cluster Computing
- Experiment Integration
- Security (including access & auditing)

Sample Databases

• In development

the globus alliance

- Tomography
 - PostgreSQL—database server
 - Sample Crawler—parses directory trees and recognizes tomography samples
 - Java/JDBC
 - Cron job

- User initiated
- TomoMPIController—database front end
 - Java
 - ImageJ plugin
- 3DXDM (Dr Robert Suter's group at CMU)
 - Developed in house at CMU

Sample Database Principles

• Catalog all samples

www.qlobus.org

- Automated/nonintrusive updates of "live" data
- User driven cataloging of "archived" data
- Specific schema per technique
 - Contain technique specific information of user interest
- Information common to all experiments
 - Contain URL of current data location
 - ESAFs, GUPs, user information, etc...
 - Relate sample to data acquired by different techniques
- Database openly available
 - Query from anywhere
 - Users can only see data they are authorized to see (security)
- Security

Workflow Integration

• In development

the globus alliance

- Tomography
 - TomoScript—Dashboard for experiment control
 - EPICS—Control system
 - Sample Changer—Automated sample changer (Chris Rhoerig)
 - Image Server—2D detector acquisition program
 - Sample Crawler—Catalogs samples
 - TomoMPIController—ImageJ plugin for sample browsing/reconstruction control
 - TomoMPI—Parallel reconstruction code
- 3DXDM
 - SPEC
 - EPICS—Control system
 - Image Server—2D detector acquisition program
- XPCS
 - SPEC
 - EPICS—Control system
 - Image Server—2D detector acquisition program

Workflow Integration

• Principles

the globus alliance

- Hide details of system—users want simplicity!
 - EPICS on multiple platforms
 - Image Server on Windows
 - Data processing code on Linux
 - Data reconstruction code on cluster
- Automation
 - Data flows out of one step into another
- Interaction
 - Peek at any step
 - Cancel/reprioritize/redirect any step

Cluster Computing

- In development
 - General Use

the globus alliance

• Sun Grid Engine

- Not generally used as a priority scheduler for different applications
- Batch submission
- Node partitioning
- Globus
 - GSI (Grid Security Infrastructure)—Credentialing subsystem (audit based on identity)
 - GridFTP—High performance ftp protocol
 - RFT (Reliable File Transfer)—Service interface to GridFTP
 - Globus Resource Allocation Manager—Abstraction layer to job scheduler
 - Tools for creating and orchestrating services (Globus Core, gRAVI)
- Tomography
 - TomoMPI—Parallel reconstruction application
- 3DXDM
 - XdmMPI—Parallel reconstruction application
- XPCS
 - XPCSMPI—Parallel data reduction application
- Microdiffraction
 - Hundreds of instances of non-parallel applications

Experiment Commonality

• Basic Workflows are Similar

www.globus.org

- Sample Database
- Automation

- Sample changing
- Data analysis
- High Throughput
- Different Implementation
 - Redundant database development
 - Redundant Sample Changer code
 - Redundant Workflow Infrastructure

the globus alliance www.globus.org (Tomography at 2BM) Simplified

Currently Done Through Human Intervention

Easily Automated for Similar Samples

the globus alliance Sample Workflow— Tomography at 1 & 32ID Simplified

Currently Done Through Human Intervention

Easily Automated for Similar Samples

the globus alliance www.globus.org

Dashboard Pictures

the globus alliance

Sample Workflow Services From Tomography Dashboard

- Support Services
 - Globus Security Infrastructure (GSI)
 - GridFTP
 - Reliable File Transfer (RFT)
 - Sample Database
 - Globus Resource Allocation Management (GRAM)
 - Many more!
- Control and Acquisition Services
 - Focus
 - Cross Correlation
 - Configure Samples
 - Change Sample
 - Sample Acquisition
- Analysis Services
 - Find Shift
 - Reconstruct Sample
 - Crop Sample
 - Scale Sample
 - Convert Data Format

Principles

- Sophisticated Programmers set up workflows
- Users should not need to learn "the grid"
 - Provide a simple user interface (Dashboard)
 - Built on top of the CoG Kit
- Users run workflows (easy push button)
 - Control the experiment
 - Manage data acquisition
 - Select samples for processing
 - View Intermediate Results...
- We're proceeding cautiously on integration of Experiment Control w/data acquisition

A Data Problem

the globus alliance

- The APS generates massive amounts of data
 - Many experiments can create a TB or more
- There is no long term storage at the APS Data can usually be stored short term (mos.)
- Users take home their data any way they can:
 - Memory sticks, hard drives, CD, Fed-ex
 - Sometimes problems occur and users get home without their data

draft: 2008-11-12

Areas for Collaboration

Andy Götz

the globus alliance

- Collaboration w/Ulrich Lienert
 - High Energy Diffraction Microscope
- FABLE can find grains associated w/peaks
- Ken Evans (ANL) would like to install & use
- Cloud Computing Collaboration (~years)
 Share applications via VMs
- Data Sharing Between Sites (~soon?)
 - Both sites provide external high performance file transfer (GridFTP?)

Thank You

the globus alliance www.globus.org Sample High Throughput

