A Light for Science

Simulation Needs

Alessandro Mirone, SCISOFT

We present a digest of programs for the simulation of spectroscopic properties (Resonant reflectivity, Phonon calculations, ab-initio simulations, multiplet calculations) (Small input, Big calculation)

How do they fit to the GRID?

What does the GRID need to host them?

Plans for the future

Important keywords

Domain (ω, k) decomposability -> coarse parallelisation(Condor)

System decomposability -> fine parallelisation (MPI)

Band-pass requirements, scalability

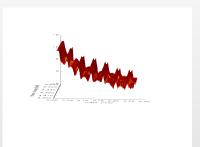
Temporary files (for example eigenvectors ...), their size, their distributibility

Benefits from GPU

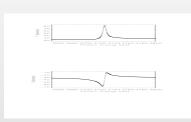
Audience: consolidated Audience, market Audience

In house competences

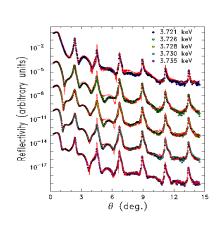
Selected programs


Code	Applications	decomposability	Band Pass	Temporary files	GPU's Benefits	Audience	In House Competences
PPM	multilayer SXRD	ω, Q (MPI)	Just the error function	None	*****	*** ****	Main developper
OpenPhonor	n HRIXS	Q (Condor)	Just the error function	1E8bytes distributed	? (lapack 20x20)** **** ,	Main developper
							Inst. f. Materials
WIEN	Phonons, XAS	K (Condor)	temporary files	50Gb NFS	? (LAPACK)	******	Chemistry
		System (MPI)	Huge (dense matrices)	?(SCALAPACK)	TU Vienna
FDMNES	XANES, DAFS	ω (MPI)	Just the spectra	None	?(LAPACK)	*****	Yves Joly CNRS,
	,	,	'		,		Scisoft maintenance
Hilbert++	multiplets,	System (MPI)	Huge	~2Gb	?	** ***	Main developper
	correlated system	• • • • • • • • • • • • • • • • • • • •	(random connectivity)		(Sparse Matrice	s)	''
	,		(· · · · · · · · · · · · · · · · · · ·		(-	-,	
FEMTO	XANES	System(MPI)	Small (zone borders)	~1Gb distrib.	(Sparse Matrice	s)* ****	Main developper
		- , 3.3(1)	(2010-2010)		(= 50.55	-,	
BigDFT	DFT (Pseudopot.)	MPI	Wavefunctions	None	Huge, (beta)		Luigi Genovese
3	(3 - , (0 ,	ABINIT	(Theory Group)

PPM: Pythonic Programming for Multilayers


Code	Applications	decomposability	Band Pass	Temporary files	GPU's Benefits	Audience	In House Competences
PPM	multilayer SXRD	ω, Q (MPI)	Just the error function	None	*****	*** ****	Main developper

[U9 Å /Fe34 Å]×30 multilayer



specular reflectivity fitted on a grid of incident angle and energy across resonances

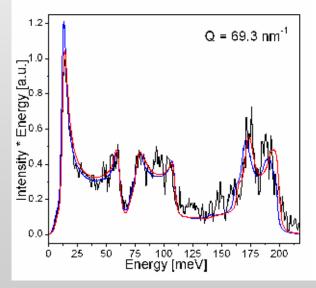
Goal: retrieval of optical constants as a function of multilayer depth, respecting dispersion relations composition/magnetisation profiles inside layers Automatic fit.

synthetised U optical constants

GPU advantages for both scalar and magnetic calculations So far used MPI for parallelisation Condor could be used but latency must remain small. The model is described by an XML file

Phys. Rev. B 77 014427 (2008)

OpenPhonon: Lattice Dynamics Calculations: Fit of parametrised forces to HRIXS spectra


CodeApplicationsdecomposabilityBand PassTemporary filesGPU's BenefitsAudienceIn House CompetencesOpenPhonon HR RIXSQ (Condor)Just the error function 1E8bytes? (lapack 20x20)** **** Main developper

Orientation average and calculation of polycrystalline IXS spectra

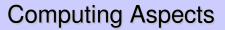
K space decomposition
Condor parallelisation
GPU: eigenvectors for
~20x20 might be a problem
latency: some seconds
eigenvectors are stored on
disk (local)

Least squares fitting routine, refining model

single crystal dispersion, thermodynamic & elastic properties Polycrystalline IXS data, collected over a large momentum transfer range

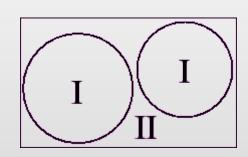
Irmengard FISCHER's Thesis

WIEN2k Blaha et al. Inst. f. Materials Chemistry, TU Vienna


Code	Applications	decomposability	Band Pass	Temporary	files	GPU's Benefits	Audience In House Competences
WIEN	Phonons, XAS	K (Condor)	temporary files	50Gb NFS	}	? (LAPACK)	****** Vienna
		System (MPI)	Huge (dense matrices)		?(SCALAPACK)	

Applications

electronic structure calculations of solids using DFT Phonons calculations, pre-edge spectra, struct. relax.


Method

Linearized augmented plane waves (LAPW) Full potential

K points parallelisation: rsh or Condor

Distributed memory(MPI): band-pass limitations

$$(\hat{I}) \phi_{k_n} = \sum_{lm} [A_{lm} u_l(r, E_l) + B_{lm} \dot{u}_l(r, E_l)] Y_{lm}(\hat{r})$$

$$) \quad \phi_{k_n} = \frac{1}{\sqrt{\omega}} e^{ik_n r}$$

FDMNES: XANES beyond muffin-tin approximation

Yves Joly, Laboratoire de Cristallographie, Grenoble

Code	Applications	decomposability	Band Pass	Temporary files	GPU's Benefits	Audience	In House Competences
FDMNES	XANES, DAFS	ω (MPI)	Just the spectra	None	?(LAPACK)	*****	Yves Joly CNRS,
							Scisoft maintenance

Applications

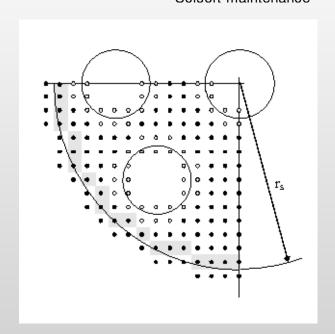
XANES study of selected atoms environment.

DAFS study of long range order parameters.

Method

Finite differences Schroedinger equation

Atomic wave-functions


Spherical Bessel outside Rs

Computing Aspects

ω parallelisation : mpi (better Condor)

Dense matrix: inverse by Lapack

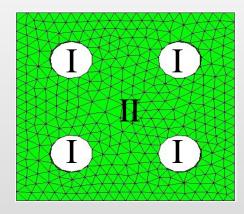
memory and time explode with Rs

FEMTO: XANES beyond muffin-tin approximation. Linear scalability

Code	Applications	decomposability	Band Pass	Temporary files	GPU's Benefits	Audience	In House Competences
FEMTO	XANES	System(MPI)	Small (zone borders)	~1Gb distrib.	Grahm-Schmidt	* ******	Main developper

Applications

XANES study of selected atoms environment.


. . . .

Method

Finite Elements + atomic function expansion

Variational principle ==> Hermitian Form

Generalised Lanczos tridiagonalisation =>continued fraction

Computing Aspects

System: mpi

3D decomposition: low bandpass

Huge systems

- I) atomic wave functions and derivative
- II) first order shape functions

BigDFT: Ab initio simulation of large systems Luigi Genovese, Theory Group

Code Applications decomposability Band Pass Temporary files GPU's Benefits Audience In House Competences

BigDFT DFT (Pseudopot.) MPI Wavefunctions None Huge, (beta) Luigi Genovese

ABINIT (Theory Group)

Applications

DFT of large systems, surfaces, nanostructures

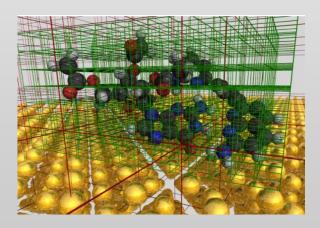
.

Method

Wavelets basis

LDA+xc

pseudo-potentials


Computing Aspects

System: mpi

3D decomposition: low bandpass

Huge systems

Hilbert++

Code	Applications	decomposability	Band Pass	Temporary files	GPU's Benefits	Audience	In House Competences
Hilbert++	multiplets,	System (MPI)	Huge	~2Gb	?	** ****	Main developper
	correlated systems		(random connectivity)		(Sparse Matrices)		

Applications

Many-body effects in pre-edge XAS, RIXS, SXRD

Method

Start from a model Hamiltonian in second quantisation

Using 2nd quantisation operators to develop

Hilbert space, and obtain Sparsa Matrices

Eigenvalues and spectra by Lanczos method

and tridiagonalisation =>continued fraction

Computing Aspects

System: mpi

N dimension: High bandpass

Small Clusters (exponential complexity)

2nd quantisation

$$e=c_{i}^{+}c_{k}^{+}\cdots c_{l}^{+}|\Box|$$

quantum states in memory:

Other Programs

AB INITIO MonteCarlo

Molecular Dynamics

Abinit

GEANT4

Moldy

Vasp

Penelope

GROMACS

ADF MCNPX

StoBe

EGS4

Siesta

Orca

Gamess-UK

Crystal

Conclusion

Different Applications with different requirements

Users could access to in-house Applications through the GRID, releaving the developers and the user from replicating installations at each external institution.

Applications in continuous evolution : GRID could ease updating issues and reduce maintenance labour.

GRID could trigger positive interactions in the scientific community.