

ROBL-CRG, BM20 Materials Research **Institute of Ion-Beam Physics** and Materials Research

www.fz-rossendorf.de

Growth and microstructure of Ti₂AIN MAX phase thin films characterized by in situ/ex situ x-ray diffraction and transmission electron microscopy

M. Beckers, N. Schell, R.M.S. Martins, A. Mücklich, W. Möller

Ti₂AIN

(111) (0006)

MgO

(111)

MgO

Ti₂AIN

(0002)

Ti_AIN

(0004)

10⁶

10⁵

nsity (arbitrary units)

Inten 10⁶

 Ti_2AIN

(0002)

Ti-Al-N

(111)

In-situ XRD - new chamber setup

Deposition onto MgO(111)

(Ti_{0.63}Al_{0.37})N seed layer not

resolvable from MgO{111} peaks

Multiple Ti₂AIN(000I) peaks and

minor traces of $Ti_2AIN(10\overline{1}4)$ visible

-> Predominant basal plane growth

Deposition onto Al₂O₃(0001)

Formation of self-organized N-

composition

 $(Ti_{0.63}AI_{0.37})N$ and Ti_2AIN proven by HR-XTEM

= 690°C without seed layer

Ex-situ lab source XRD

Cubic AIN layer still detectable -> stable cubic interfacial layer

Multiple Ti₂AIN peaks detectable with only slight deviation from powder intensity distribution -> No epitaxial relationship between film and substrate -> Ti₂AIN layer is non-textured, proven by pole figures

XTEM investigation

Cubic TiN/AIN interfacial layer clearly detectable from dark field images

Ti₂AIN layer still consists of grains with sizes up to layer thickness Local epitaxy of individual grain is possible, however rare

Layer-by-layer growth of $(Ti_{1-x}AI_x)N$ layer with increased roughening than for deliberate (Ti_{0.63}Al_{0.37})N Onset of Ti₂AIN nucleation during ongoing growth clearly visible

 Al_2O_3

(0001)

Growth at T_{Substrate} ~ 800°C

Ti₂AIN

(00012)

Substrate

 Al_2O_3

MgO (222)

Ti₂AIN

(00010)

Ti, AIN: ~500 Å

₆₃Al_{0.37})N: ~80

1000

✓ – 4th dep. : ~2000 Å

– – – 3rd dep. : ~1500 Å

- 2nd dep. : ~1000 Å
- 1st dep. : ~500 Å

Ti₂AIN(1013)

Ti₂AIN(1014)

1st deposition

2nd deposition

Ti₂AIN

(00012)

800

12 22 23 24 25 26 27

Scattering angle 2q (degree)

MgO(111)

TiN (111)

(Ti_{1-x}Al_x)N

200

Spinel

(Mg-A-Ti)O

(111)

Sity 10⁶

30000

20000

10000

Substrate MgO(111)

Sputter time (s)

600

400

 $Ti_{2}AIN(10\overline{1}2)$ offers adaptation to one $(Ti_{0.63}AI_{0.37})N < 110 > direction$ (mismatch 0.33 %)

Other <110> directions need over next atom binding and show high lattice mismatch (6%)

Conclusions

- Successful deposition of Ti₂AIN MAX phase thin films (Second experiment world-wide)
- Growth and microstructure can be influenced by seed layer deposition

Spinodal decomposition into TiN + cubic AIN, concurrent topotaxial (Mg-Ti-AI)O₄ formation Only $Ti_2AIN(10\overline{1}3)$ peak detectable -> Tilted basal plane growth !? **Time-dependent XRR**

face

(1012)

- Threefold in-plane orientation does not allow grain-boundary-free coalescence -> equi-axed morphology
- Initial atomic Ti layer needed for nucleation of Ti₂AIN(0001) onto $(Ti_{0.63}AI_{0.37})N(111)$ Co-sputtering process provides flux of both Ti AND AI

Higher substrate temperature or high low-energy ion flux to substrate -> Element partitioning

Low substrate temperature -> Changed interfacial adaptation and substrate temperature during growth

- A (Ti_{0.63}Al_{0.37})N seed layer and low substrate temperature leads to tilted basal plane growth, irrespectible of substrate orientation due to kinetical restriction during nucleation, which asks for specific interfacial adaptation
- A (Ti_{0.63}Al_{0.37})N seed layer and high substrate temperature leads to upright basal plane growth due to sufficient adatom mobility during nucleation to allow elemental partitioning both for MgO(111) and $Al_2O_3(001)$ substrates
- Deposition without deliberate $(Ti_{1-x}AI_x)N$ seed layer still leads to formation of cubic interfacial layer, with subsequent spinodal decomposition into TiN and AIN. The rough surface of the self-organized cubic seed layer leads to non-epitaxial growth of Ti₂AIN

Financial support from the Deutsche Forschungsgemeinschaft under contract SCHE 682 is gratefully achknowledged.

Corresponding authors:

M.Beckers@fz-rossendorf.de **Dipl.-Phys. Manfred Beckers** Tel.: +49 351 260 3389 Forschungszentrum Rossendorf, P.O. Box 510119, D-01314, Germany **Dr. Norbert Schell** Tel.: +33 47688 2367 Schell@esrf.fr **ROBL-CRG (BM20), ESRF**

