An Object-Oriented Framework for Distributed Control Systems

J.M. Filgueira, M. Pi, R. Peñataro

GTC Project. Instituto de Astrofísica de Canarias (IAC), Tenerife, Spain
Abstract

The GTC [1] is a ten-meter class optical-infrared telescope that is being built at the ORM Observatory in Canary Islands. The GTC Control System (GCS) is a real-time, object-oriented distributed control system [2] [3]. From a development point of view, the architecture is composed of several kits that provide a set of tools, frameworks, components and design patterns. These kits allow standardizing and reusing components, and have been extensively used during the past years in the implementation of the GCS. One of the key kits is the Control Kit, which facilitates the design and construction of distributed control applications. CORBA [4] is used as a distributed middleware that provides both the data transport and the command model. The design of the Control Kit is based on a component model (Device Components) that hides the complexity of distributed programming to the developer and allows easily integrating Devices to the basic infrastructure services of the GCS. This infrastructure provides GUI components, persistence, and basic services common to control systems, like real-time monitoring, alarm handling, logging, configuration and life cycle management. This paper presents the design and experience gained in the use of this kit.

1. Introduction

When building distributed systems there are common functions that need to be provided (e.g. connection handling, marshalling, request dispatching). Although the use of a distributed middleware as CORBA (the TAO ORB [5] in the GCS case) solves part of this problem in a standard way, there are still some issues that need to be addressed. CORBA is a low level mechanism, but there is still a lot to do to build a system. From a developing point of view we have a set of application systems developed by different people, we have a distributed object model, a persistence object model, an application specific object model (controls systems in this case) and different programming language mappings. We have also a process model in which we assign those objects to different processes and threads. The obvious question is: how all those aspects are coordinated?

Object-oriented frameworks are used at GTC to address this issue. In the GCS there are two different sets of frameworks, those that allow to build common infrastructure more efficiently, like the Distributed Application Framework (DAF) or the Data Access Layer (DAL) and those that allow to build final application specific systems like the Control Kit, the Data Processing Kit (DPK) or the GUI kit. Fig. 1 shows the overall development view of the GCS.

[image: image1.wmf]

Domain Independent Layer

System Services Layer

Domain Specific Layer

Application Layer

DAF/JDAF

Control Kit

Time

Service

CCDKit

TAO

VxWorks

Device

Drivers

JVM

Solaris

Data

Procesing

Kit

Data

Processing

Library

JDK

Inspector

Persistence

System

GUI Kit

Sequencer

DAL

M2

Control

System

MACS

Control

System

M1

Control

System

Astro

Library

Fig 1. GCS Development View.

The majority of the developing team uses application specific frameworks so they can focus on domain specific problems. These frameworks make use of infrastructure frameworks to implement basic common functions (e.g. logging, alarm handling, real-time monitoring). All the basic common functions are solved one time and used through all the system in a standard and transparent way by the developers.

The use of application specific frameworks also allows to standardise some aspects of the system architecture. When a large set of applications has to be implemented the use of a tool that allows to automatically generate some part of the code naturally comes out.

As we will see with more detail, the basic component of the real-time control subsystems of the GCS is the Device. Other subsystems deal with other components that are useful in the running of an Observatory, like observations, observing schedules, observing programs. In this paper we will focus on the real-time and control subsystems.

Devices are CORBA objects that are both application servers, as they export their interface to upper layers in the supervisory and coordination chain, and application clients, since they make use of common services to implement part of their functionality.

In the rest of this paper, the Control Kit object-oriented framework is presented from a practical point of view.

2. The Control Kit

2.1 Design Drivers

The objective of the Control Kit (CK) is to provide an object-oriented framework to build control applications for the GTC. The low level details of CORBA are hidden to the users of the Control Kit. This allows the developers to concentrate on the real-time part rather than spend too much time dealing with distributed programming issues. In most cases, they don’t even need to know anything about their IDL interfaces as they are automatically generated. The Control Kit provides a set of common tools, which allow integrating the Devices in the GCS in a plug & play way.
2.2 Device Component

A Device is a run-time component that provides a cohesive set of services. It can control a hardware functional unit (a filter wheel, the azimuth axis, the M3 mirror, an A&G arm, the dome, an LCU, etc.) or can be a software device used to coordinate other devices or to perform some kind of service.

The Device behaviour is associated with the behaviour of an external hardware or software element and is represented by a finite state machine that includes generic states common to all Devices (Off, Initializing, Fault, Disabled, Run, etc). Also, the Control Kit enforces a common interface for all Devices. This allows performing the same set of operations (init/start, enable/disable, etc.) to all Devices. The generic interface includes some methods that are already implemented and other virtual methods that are Device-dependent because their internal functionality is specific.

Devices can be developed and tested independently of other software but, finally, they shall be integrated with the rest of the GCS services (Monitoring, Configuration, Logging and Alarms, Inspector, etc). For this purpose, the Control Kit provides a set of classes (the DeviceConfigurator, the DeviceFacade, etc) which integrate the Device within the GCS. As we’ll see, these classes can be automatically generated by a Control Kit tool. A Device which has been completely integrated in the GCS is a Device Component.

In run-time, a Device Component is composed of a cluster of objects. All objects of a Device Component share the same thread of execution. The priority of this thread must be carefully chosen according to the real-time scheduling algorithm employed. However, due to hard real-time requirements, a certain Device can be allocated in a thread with higher priority than the rest of objects of the cluster or, if needed, can create new threads with higher priority.

2.3 Device Library

The Control Kit offers a library of Devices to control hardware equipment such as motors, encoders, relays, thermometers and sensors of different types. This set of Devices is being incrementally developed and can be reused in several GCS subsystems. The reuse of Devices can dramatically increase the productivity when designing new control applications.

To communicate with the hardware devices and with the external equipment to be controlled, the Devices make use of Device Drivers. The GCS Device Driver Kit (DDK) provides an object-oriented framework to develop VxWorks device drivers under VME and PCI (PMC) platforms. A Device can obtain a reference to a device driver object using its name.

Figure 2 shows an example of how an application Device, like the azimuth axis, can use the Devices in the Device Library and the Device Drivers.

[image: image2.wmf]

Device

PMACDriver

PMACMotor

IK320Driver

IK320Encoder

AzAxis

CANDriver

AxVDrive

Control Kit

Device Drivers Kit

Application

 Fig 2. Control Kit Devices
3. Using the Control Kit

3.1 Device development

The development process of a Device Component is made in two steps: the stand-alone phase and the integrated phase. Firstly the developer works on the core class that represents the hardware device, focusing on how that device works, all problems specific to that device are solved, how will be exported the interface, which methods are required, which variables are worth being monitored, and which variables must be parameterised as device properties.

The core class is tested, fixed and tested again following a quick compilation cycle, since the classes involved are only a few. When the core Device class is enough tested and is relatively stable, the integrated phase is tackled. Several additional classes are required to promote the Device to be a Device Component: the DeviceConfigurator class, the DeviceFacade class, the DeviceFactory class and the DeviceMonitor class. Although this seems to take a lot of work, as it will be explained in the next section, all these classes are automatically generated by the gdev tool.

The integration with the Inspector (the GTC graphical user interface) is automatic, or plug & play. This means that the Inspector simply discovers the presence of a Device Component and immediate access is gained.

3.2 The gdev tool

A significant part of a Device Component’s functionality is common to all Devices, so it can be inherited from base classes. However, a large amount of source code must be written for the specific Device, a part of it following repetitive patterns, what makes of it a tedious and error-prone task.

gdev is an automatic code generation tool, which, fed by a device specification file, generates both the header files (class declaration) and the implementation files for all the classes that make up a Device Component. Only the implementation of the core class Device must be edited by the programmer in order to fill in the specific methods. The device specification file is written in Java, where the device specific data is embedded inside comments using a set of predefined tags.

The file specifies not only the methods and variables of the Device but the property definitions, magnitude definitions, method documentation and other meta-data. A brief example follows:

public abstract class FilterWheel

{

 /**

 * Name of the PMAC card in the GCS

 * @property

 * @name PMAC Name

 * @default "PMAC1"

 * @maximum ""

 * @minimum ""

 * @units None

 */

 private String pmacName_;

 /**

 * Encoder counts in the filter wheel

 * @property

 * @name Encoder counts

 * @default 720.0

 * @maximum 2000.0

 * @minimum 0

 * @units Count

 */

 private float encoderCounts_;

/**

 * Position of the filter wheel motor

 * @magnitude

 * @name Motor Position

 * @maximum 720.0

 * @minimum 0

 * @units Count

 * @sampling TimeValue(0, 200000)

 */

 private float position_;

 /** Select which filter is in position */

 abstract void selectFilter(short filter);

 /** Go the reference position */

 abstract void goHome();

}

3.3 Testing the device

A test program written in C++ is also generated by the gdev tool. This program executes all the methods of the Device in Stand-alone mode, i.e. the program is executed from the VxWorks shell. To test the Device in Integrated mode a similar program written in CorbaScript can be used: in this way the remote access through CORBA (facade class) is tested, along with the configuration and monitorable variables of the Device Component. The Device Component is definitely tested from the Inspector, the graphical user interface.

3.4 Simulation

The Device can be started in Simulation mode, which means that no command is sent to the device driver employed; instead, each command is output to the logging system. This mode is often required in case: (1) the VME I/O card used to interface with the hardware device is not plugged into the VME crate; or (2) the hardware device is not physically connected to the VME crate; the latter case appears quite often, since the hardware is usually manufactured and assembled at a contractor’s site, whereas the controller is developed in parallel at the GTC project office.

3.5 GUI Kit

The GUI Kit provides a set of Java graphical widgets (Java beans) that provides different views of a Device Component: alarms panel, log messages panel, 2D-charts, configuration edition panel, commands panel, etc.

The programmer or the operator builds a customised graphical panel for a certain Device by simply drag & dropping the available widgets from the Inspector tool-box in runtime. No source code has to be written here. Additionally, the programmer may choose to add a custom view of the Device by writing a class in Java and integrating it with the Inspector.

3.6 Persistence

Persistent data associated to a Device Component may be divided into two categories:

· Input data and device meta-data: property values, property definitions, magnitude definitions

· Output data: alarms, log messages and monitoring samples

In any case, the Device does not directly access a database. Instead, the Device sends or retrieves data through an application server that exports a CORBA interface. Application servers run on UNIX workstations and they do access an object-oriented database system. There is one of such application servers specialised for each kind of data: alarms, log, monitoring, etc.

3.7 Device Components as application servers

Several approaches can be followed to co-ordinate different Devices: centralised control, totally distributed control, or hierarchical control. The GTC control system applies a hierarchical scheme, implemented with the composition of Device Components. From this point of view, two classes of Device Components can be found in the GTC control system:

· Subsystem controllers. Those are local to each subsystem and only deal with the co-ordination of local hardware devices. Here two levels can be found:

· Device controllers: each hardware device has an associated Device Component (i.e. a motor)

· Subsystem controllers: co-ordinates different Device Components inside a subsystem and implement subsystem level operations.

· Co-ordination controllers. Those can be also classified in two sets:

· Real-Time controller. In this case these controllers are responsible of the real-time co-ordination of different subsystems (i.e. sending the pointing demands to the Main Axes Control System or updating the optical configuration based on the wavefront sensors readings).

· High level operation sequencing of the overall system, i.e. executing an observation, calibration of the primary mirror.

[image: image3.wmf]

DeviceController

SubsystemController

Sequencer

ObservingEngine

Control Devices or sets of Devices,

but always inside the subsystem

Real

-

Time

Co

-

ordination

of

subsystems

Sequencing

of high

-

le

vel

operations

Equipment Control and

Monitoring

Operation Co

-

ordination

Fig 3. Device Components

This approach eases the design of application servers, leverages the composition capabilities of our framework and allows to look at the whole GTC control system as a large tree of Device Components, and even the whole GCS itself as a component.

4. Conclusion

Application specific frameworks allow developers to focus in domain specific problems in an efficient way. Infrastructure frameworks provide basic common services that are used by those application specific frameworks. The use of these frameworks and the standardisation of some aspects of the system architecture also allows to develop some code generation tools to increase productivity. We think that this approach is essential in order to build a large distributed system in an efficient way.

5. References

[1] GTC web page, http://www.gtc.iac.es/
[2] Jose M. Filgueira, M. Pi, P. Gómez-Cambronero, M. González, R. Peñataro, “Architectural design of the GTC control system”, March 2000, SPIE-2000.

[3] R. Peñataro, Jose M. Filgueira, , P. Gómez-Cambronero, M. González, M. Pi, , “The application of CORBA to the GTC control system”, March 2000, SPIE-2000.

[4] CORBA web page, http://www.corba.org/
[5] TAO web page, http://deuce.doc.wustl.edu/
[6] CORBA Script web page, http://corbaweb.lifl.fr/CorbaScript/
_1095505659.doc

DeviceController

SubsystemController

Sequencer

ObservingEngine

Control Devices or sets of Devices,

but always inside the subsystem

Real-Time

Co-ordination

of

subsystems

Sequencing

of high-level

operations

Equipment Control and

Monitoring

Operation Co-ordination

_1095511247.doc

DAL

Sequencer

GUI Kit

Persistence System

Inspector

JDK

Data Processing Library

Data Procesing Kit

Solaris

JVM

Device Drivers

VxWorks

TAO

CCDKit

Time Service

Control Kit

DAF/JDAF

M1

Control System

Application Layer

Domain Specific Layer

System Services Layer

Domain Independent Layer

M2

Control System

MACS

Control System

Astro

Library

_1095505377.doc

[image: image1.wmf]Device

PMACDriver

PMACMotor

IK320Driver

IK320Encoder

AzAxis

CANDriver

AxVDrive

Application

Device Drivers Kit

Control Kit

