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Outline

● Why do we need new detectors?
● What detectors will have most impact?
● BNL development initiatives

– Spectroscopy
– Diffraction
– Speckle



BNL Collaborators for silicon detector 
development

� Zheng Li , Pavel Rehak, Wei Chen, Rolf Beuttenmuller, detector 
elements (Inst. Div.).

� Paul O'Connor, Gianluigi De Geronimo, ASIC design (Inst. Div).
� Peter Siddons, Tony Kuczewski, computer and user interface 

(NSLS)
� Technical assistance:

� John Triolo, Don Pinelli (Inst.) , 
� Denis Poshka, Tony Lenhard, Shu Cheung, Rick Greene 

(NSLS)



NSLS-II
● A new 3rd-generation 

source at BNL

● 3GeV, 600m 
circumference.

● 24 TBA cells

● 5m straights

● 1.5nm-rad/0.008nm-rad

● Green-field site adjacent 
to NSLS

● 2012 ops.



LCLS



Generic microprobe schematic

● Includes facilities for 
– fluorescence (multi-element detector) 
– diffraction (fast readout area detector)
– microscopy (full-field ZP microscope)



Next-generation x-ray microprobe 
spectroscopy detector

● Continuous-scan sample rastering
– rapid image acquisition
– Collaboration with CSIRO /Australian Light Source

● 400 element full-spectrum back-scatter detector 
array

– <200eV resolution @ 4us
– >100kHz @ 0.5us

● Real-time quantitative multi-elemental mapping
– Fast per-photon processing, detector response and 

spectral modeling



'HERMES' ASIC channel 
overview

≈ 5 mW≈ 3 mW
ASIC

continuous reset

INPUT p-MOSFET
•optimized for operating region
•NIM A480, p.713

CONTINUOUS RESET
•feedback MOSFET
•self adaptive 1pA - 100pA
•low noise < 3.5e- rms @ 1µs
•highly linear < 0.2% FS
•US patent 5,793,254
•NIM A421, p.322
•TNS 47, p.1458

counters

discriminators

DACS

DISCRIMINATORS
•five comparators
•1 threshold + 2 windows
•four 6-bit DACs (1.6mV step)
•dispersion (adj) < 2.5e- rms

COUNTERS
•three (one per discriminator)
•24-bit each

baseline 
stabilizer

HIGH ORDER SHAPER
•amplifier with passive feedback
•5th order complex semigaussian
•2.6x better resolution vs 2nd order
•TNS 47, p.1857

BASELINE STABILIZER (BLH)
•low-frequency feedback, BGR
•slew-rate limited follower
•DC and high-rate stabilization
•dispersion < 3mV rms
•stability <2mV rms @ rt×tp<0.1
•TNS 47, p.818

high-order
shaper



quadrant
(8×12=96 
pixels)96-channel 

front-end
(3 × 32 
channel 
ASICs)

Peltier

20mm

� 398-element silicon 
pad array for 
absorption 
spectroscopy 
and/or x-ray 
microprobes.

� Central hole for 
incident pump 
beam to allow close 
approach to 
sample.

� Uses 12 ASICS.
� Peltier cooled to -

35 deg. C.

High-rate multi-element detector 
for fluorescence measurements



Backscattering geometry for microprobes

sample

sensor



One quadrant with ASICS

� 96 pads wire-bonded to 3 
ASICS.

� The long bonds are rather 
fragile, but this approach 
provided least parasitic 
capacitance.

� Each ASIC provides 32 
channels of low-noise 
analog/digital processing.

� ASIC appears to have 100% 
yield (no bad channels to 
date).



55Fe spectrum

50µm-gap, Cp ≈ 700fF, Ci-bond ≈ 50-200fF, Ci-pad ≈ 220fF 
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Non-spectroscopic applications
� Strip-shaped pixels 

form a 1-D position 
sensing detector with 
energy resolution 
(~350eV).

� 320 strips on 
0.125mm pitch -> 
40mm total length

� Strips 8mm long
� Useful for diffraction 

and scattering 
experiments.



MEDM user interface
� SOFTWARE IS 

IMPORTANT!!!
� Standard EPICS 

facilities allow quick 
GUI development, 
much easier than 
conventional GUI 
toolkits.

� Device looks very 
similar to the standard 
EPICS scaler device, 
but with many more 
channels and additional 
detector control 
functionality.

� Thresholds set via on-
board DACs accessed 
as 'ao' records.



Powder diffraction
� Detector length = 

40mm
� Sample-detector 

distance = 263mm
� -> 8.7 degrees 

coverage, 0.03 
degrees / strip.

� 13 measurements 
spaced 7.5 degrees 
apart, each 1 second 
count time.

� Total 20 sec. scan.





Charge-sharing
● Pinhole collimator 

measurements:
– Green curve near 

edge of pixel

– Red curve at center 
of pixel

● Primarily a 
geometrical 
problem

– Absorption mask to 
cover gaps

– 'Trenching' to 
physically separate 
pixels, at least on 
entrance side.



Next step
� Try to replace pad detectors with drift 

detectors.
� Work towards a system providing full 

spectrum per channel, instead of hardware 
windows

� Same low-noise analog front-end
� Integrate BNL Peak-detect / derandomizer 

module, modified for time-over-threshold mode 
(pileup rejection).

� Fast ADC + FPGA + CPU to process data
� Real-time processing



Detector array
● Mult-element array

– 400-element drift detector 
array

● Drift detector provides 
improved resolution at 
high rates

– Central hole for incident 
beam

● Multi-channel 
ASIC 

– 32 channels

– <200eV resolution

– Pileup rejection circuit



Work supported by:
U.S. Department of Energy, Office of Basic Energy Sciences
Australian Synchrotron Research Project

Quantitative PIXE Real-time Imaging and its 
Application to Imaging using the Synchrotron 

X-ray Microprobe  

Chris Ryan1, Barbara Etschmann1, Stefan Vogt2, Jörg Maser2, Cathy Harland2

1 CSIRO Exploration and Mining, Clayton VIC, Australia 
2 Advanced Photon Source, Argonne National Laboratory, Argonne IL, USA 



Real-time Elemental Imaging …

Event: Detector N, Channel i(E), Position X,Y

Cd

Zn

Cu

Fe

As

Matrix column

Detectors
X

Y

N:

Energy Cals

Dynamic Analysis
Γ matrix

Synchrotron – Nuclear Microprobe Synergy Ryan, Etschmann, Vogt, Maser, Harland, NSLS Users Meeting, May 2004



1 mm

Au  (DA)

Au Lγ2,3  (cuts)Mn  (cuts)

Mn  (DA)

Test sample composed of 
pieces of pure elements, plus 
GaAs.

Test scan: 3.0 x 2.0 mm2

Au Lα (cuts)

Au  (DA)

Illustration of Dynamic Analysis using PIXE
Map

3 MeV protons



Test of Dynamic Analysis using SXRF
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Synchrotron – Nuclear Microprobe Synergy Ryan, Etschmann, Vogt, Maser, Harland, NSLS Users Meeting, May 2004



1ms readout active-matrix 
area detector

● Fully pixellated detectors are complicated
● Hybrid (bump-bonded) devices add fabrication 

difficulties
● Monolithic devices built on high-resistivity 

silicon provide simplest structure
– No bump-bonding
– Simplest structure is active-matrix type

● row-by-row parallel readout
● N readout channels instead of N x N

– Need to provide low-resistivity layer to fabricate 
readout structures



Pixel structure
● Low-resistivity layer is 

formed by deep 
implant.

● JFET switches are 
fabricated in this layer

● Charge is produced by 
photoionization

● Electrons collect under 
pixel (switch is OFF)

● Charge is read out by 
turning transistor ON, 
connecting stored 
charge to a buss-bar, 
and read out by a 
charge-sensitive 
amplifier.

Figure 6. One pixel from an Active Matrix Pixel detector array. The device is fabricated by forming a low-
resistivity silicon layer suitable for JFET switching devices on top of high-resistivity silicon optimized for detector 
fabrication. The JFET transistors formed in this layer are used to row-sequentially switch the collected charge into 
column output amplifiers.



Active matrix readout
● Charge stored in diode 

capactance (switches off)

● Readout amplifier/ADC 
on each column

● Switches turned on 
sequentially row-by-row

● Charge read out and 
digitized

● 1us per row => 1ms for 
1000 rows.

– 8-channel 
40MHz/channel ADC 
chip exists

– 32 chips, each ADC 
multiplexed among 4 
columns

– 2Gb/s data rate



View of a completed wafer



Prototype device
● Part of an 8 x 8 

pixel test device
● 180 um square 

pixels



Alternative small-pixel structure

● Small pixels are difficult with transistor switch
● Charge can be stored in potential well and 

released in a controlled way, similar to drift 
detectors.

● This 'charge pump' technology is ideal for speckle 
applications.



Top view of a pixel with a charge 
pump single transfer



Charge pumping (no transistor)



Readout system
● Row-by-row readout, 

1us/row

● 32 Fast (>20MHz) 8-
channel ADC's 
multiplexed e.g. x4 = 
1024 

● 2Gb/s

● Data streamed through 
FPGA to fast memory 
and terabyte disk store.











Summary
● A path to satisfying the needs of current and next-

generation microprobes exists
– Spectroscopy
– Diffraction
– Speckle

● The demand for higher-performance instruments 
is clear

– Higher rate capability 
– Better throughput
– better utilization of photons
– Better (and real-time) analysis

● It will take all of us to push hard if anything is to 
happen.


	Next generation microprobes: Detector Issues and Approaches
	Outline
	BNL Collaborators for silicon detector development
	NSLS-II
	LCLS
	Generic microprobe schematic
	Next-generation x-ray microprobe spectroscopy detector
	One quadrant with ASICS
	Non-spectroscopic applications
	MEDM user interface
	Powder diffraction
	Charge-sharing
	Next step
	Detector array
	1ms readout active-matrix �area detector
	Pixel structure
	Active matrix readout
	View of a completed wafer
	Prototype device
	Alternative small-pixel structure
	Top view of a pixel with a charge pump single transfer
	Charge pumping (no transistor)
	Readout system
	Summary

