# High Spatial and Temporal Resolution Detectors for 3D studies using 30-100 keV X-rays.

Henning Friis Poulsen

Center for Fundamental Research: Metal structures in 4D Risø National Laboratory, Denmark







#### Metal Structures

#### 1. Undeformed :



3. Annealing:



2. Deformation:



4. Annealing:



# 4D Vision



3D characterisation on a 100 nm – 1cm scale: position, morphology orientation plastic and elastic strain phase, crystallography chemical information

- Statistics over 100-1000 grains
- In-situ studies

H.F. Poulsen: Three-Dimensional X-ray Diffraction Microscopy (Springer, 2004).

# Parallel data acquisition

| Position:           | 3D |
|---------------------|----|
| Orientation:        | 3D |
| Lattice parameters: | 6D |



#### 12D Space:

| 1000 x 1000 x 1000 positions:      | 109        |
|------------------------------------|------------|
| 0.5 deg orientation resolution     | 104        |
| 10 <sup>-4</sup> strain resolution | <u>106</u> |
|                                    | 1019       |

### 3DXRD Geometry @ ID11



#### Spatial + Orientation

Strain + Orientation + Crystallography

# Reconstruction of grain map



5 min acquisition time Resolution 5  $\mu$ m

#### Growth of an internal grain

Recrystallization of 42% deformed pure Al during annealing at ~200 C.



S. Schmidt et al. Science, 2004, 229-232.

## **3DXRD** resolution



•

30 sec

Time for 100

1 sec

msec

1-10 hours

Set-ups at ID11, ESRF & SRI-CAT, APS

## Lens coupled CCDs

ESRF: A. Koch, P. Spanne, C. Raven, T. Martin, M. Di Michiel, P. Cloetens .. HASYLAB: F. Beckmann



# Limitations of lens coupled CCDs

- Optical limit of 700 nm
- Thin screens with support:
  Low efficiency (~1%)





Flour. Substrate foil

- Point Spread Function with large tails



## Differential Aperture X-ray Microscopy





Spatial resolution: 0.5 µm

B.C. Larson et al. Nature 415, 890 (2002)

# Materials science @ synchrotrons 5 years from now

4D movies with time resolution of < 1 minute  $1 \text{ mm}^3$  specimens with a resolution of 1  $\mu \text{m}^3$  $100 \ \mu \text{m}^3$  specimens with a resolution of 100 nm<sup>3</sup>

Combination: tomography diffraction (3DXRD) crystallography

1. 3D detector banks

2. New generation of high resolution detectors

## Plastic flow

#### Plastic strain field





#### Work with F. Beckmann, HASYLAB

## Plastic flow in real material



*Tomography:* Local plastic flow

# 3DXRD: Grains, Rotations of grains

# Maps of *the* local slip activity in a 3D, bulk sample

Third route in crystallography: Structural solution of polycrystals

Validation:  $Cu(C_2O_2H_3)_2H_2O$ .

70 grains of size < 1 micron Cell  $\sim 1400$  Å<sup>3</sup> (C2/c)



G. Vaughan, S.Schmidt, H.F. Poulsen. Z. Kristall. (2004) 219, 813-825

Brainstorm, 1<sup>st</sup> question:

#### Pixelation to 100 nm



3D screen prodcued by FIB?

Parallax no problem



Brainstorm, 2nd idea:

# Array of Position sensitive diodes



e.g. Hamamatsu

Downscale concept:



X-ray energy: 30-100 keV



Precision: 1 in 1000

### Array of Position sensitive diodes

100 layers



Brainstorm, 3rd question:

# Energy dispersive 3DXRD



Still 2  $\mu$ m resolution

but much faster

Case: new generation of high resolution detectors

A factor of 100 to be gained in flux

A factor of 20 in spatial resolution

Applications: 3DXRD on metals, ceramics, microelectronics, rocks, ice, bones, sugar, ... Imaging in general, in particular at 2<sup>nd</sup> generation sources

More speculative: Total Crystallography on drugs, ... Free electron lasers

#### Collaborators on instrumentation/software

<u>Risø</u>: X. Fu, E. Knudsen, E.M. Lauridsen, L. Margulies, R. Martins, S.F. Nielsen, S. Schmidt, H.O. Sørensen

<u>ESRF</u>: A. Goetz, Å. Kvick, G. Vaughan, T. Buslaps, V. Honkimäki, T. Martin

APS: U. Lienert, J. Almer

IMSA-Lyon: W. Ludwig

State University of N.Y: G. Herman