

CORNELL

CHESS & LASSP

Photon counting PADs

- Input amp, followed by shaper and threshold for photon discrimination to output a digital bit, usually to an in-pix counter.
- Pixel count-rate set by speed of electronics processing. 10⁶ -10⁸ x-rays/sec typical. Susceptible to pile-up.
- Requires very careful noise control.
- "Well-depth" set by number of bits in counter.
- Duty cycle set by need to read in-pix counter if synchronous. If asynchronous, need to isolate input from coupling to digital readout.

Analog PADs (APADs)

- Input integrator onto in-pix analog storage. Reminiscent of CCD.
- For readout, buffer stored signal to off-pix (usually off-chip) ADC.
- Capable of handling enormous count-rate.
- Well-depth set by analog storage capacity.
- Duty cycle set by time to digitize analog signal if synchronous. If asynchronous, need to isolate input from coupling to analog readout.

ESRF Detector Wrkshp 10 Feb 2005

CORNELL

Cornell 100x92 Analog PAD

CHESS & LASSP

1.2 μm HP CMOS process (MOSIS) (Linearized Capacitors)
15 x 13.8 mm² active area; 100x92 pixels
150 μm square pixel
300 μm thick, high resistivity Si diode wafer (SINTEF)
120 μm solder bump bond (GEC-Marconi)

100x92 PAD developers include: Sandor Barna Eric Eikenberry Alper Ercan Sol Gruner Matt Renzi Giuseppe Rossi Mark Tate Bob Wixted

G. Rossi, et al, J Synchrotron Rad. (1999). 6, 1095-1105.

ESRF Detector Wrkshp 10 Feb 2005

- 1.8 ms time sequence (composite). 10⁵ images
- 5.13 μs exposure time. (15.4 μs between frames)
- 88 frames (11 groups of 8 frames), Avg. 20x for noise.
- 1000 x-rays/pixel/μs
- Data taken with 4 projections.

ESRF Detector Wrkshp 10 Feb 2005.

PAD design: Matt Renzi, Alper Ercan

Tests: Alper Ercan

hrough chalk dust water.

120 frames/sec

What do we really want for most experiments?

CHESS & LASSP

<u>Answer</u>: For a given slice of time, a 2dimensional floating-point array of numbers that maps the x-ray intensity over a given imaging surface.

Question: Given this, how many digits should there be in the mantissa?

<u>Answer</u>: Relative accuracy of existing detectors almost never exceeds 0.2% and, typically barely achieves 1%. Suggests an 8 bit mantissa.

- 1. Charge integrated up to some max level, set by threshold, Q_{T.}
- 2. When Q_T is reached, a bit is added into in-pix digital counter, and the integrator is zeroed.
- 3. Upon command, the total count is output. The remaining charge in the integrator is digitized, if desired. One ADC/row.

ESRF Detector Wrkshp 10 Feb 2005

ESRF Detector Wrkshp 10 Feb 2005.

- suggests MMPAD has advantages of both analog and photon-counting PADs.
- Several rounds of MMPAD test chips have been made.
- Much work remains (packaging, tiling, rad-damage mitigation, etc.), but no showstoppers.

ESRF Detector Wrkshp 10 Feb 2005.

