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Talk Outline.

Avalanche PhotoDiodes ...
• Schematic

• Basic principles (gain, signal, noise)

• Types / Manufacturers.

Energy resolution

Timing resolution/Efficiency

Arrays

Developments.
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APD flavours
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Very small occupied volume

APD
~2-3mm height

5x5 mm APD
package thickness ~1mm

5x5, 10x10mm
active area

Transmission assembly
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Gain is due to hot electrons impact ionisation.
Unfortunately, both holes and electrons can ionise .

The result is that while most of the electrons will undergo a 
simple multiplication. Once in a while a hole will generate 
another e-/h pair triggering a new avalanche.

This feed-back broadens the gain distribution 
and thus introduce extra noise.

Ionization Rates for Silicon at 300 K
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APD Gain Curve

Schematic of the Schematic of the 
electrical fieldelectrical field
at various points at various points 
along the gain curvealong the gain curve

Gain vs. BiasGain vs. Bias
Different field profiles Different field profiles 

have different gain have different gain 
curves.curves.
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The Gain distribution

!)1(
)1(),,(

)1(
)(

, rk
eekrnCP r

rk
krn

rnn −
−

⊗=
−−

×+−
+

δ
δ ∫ ×=

w

dx
0

αδ

[ ]
( )

( )
( )

( ) MnMnrnX
rkn
Xkn

r
Xn

rrknrn
nP

k
rknr

rnn

××−+=

⎟
⎠
⎞

⎜
⎝
⎛

×+
−

+⎟
⎠
⎞

⎜
⎝
⎛ ×

−
×+×+

=
−

×+

+

/

111
)(()(2

1

5., π

1.0E-06

1.0E-05

1.0E-04

1.0E-03

1.0E-02

1.0E-01

1.0E+00

0 20 40 60 80 100

Gain

1   primary electron(s)
5   primary electron(s)
25  primary electron(s)
500  primary electron(s)

Average Gain=20 Gain is a statistical 
distribution.

The width of the distribution 
can be characterised by the 
excess noise factor:

( ) ⎟
⎠
⎞

⎜
⎝
⎛ −×−+×==

M
kMk

M

MF eff
1212

2



February 2005,  ESRF workshop: “New physics with New Detectors” H. DautetPage 9

Noise (divers formulations depending on pre-amplifier)!!
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Energy resolution vs. Bias 

Only with low electron 
yield does bias need to be 
increased.

~200 e-

~1000 e-

R. Lecomte et al. NIM-A 1999

Rule of thumbs M~ 30 to 70 sufficient.

If unusual conditions exist (e.g. noisy 
environment) higher gain up to 500-1000 
usually possible.
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Energy Resolution

Noise (from previous slides ) 
- Higher gain -> higher multiplication noise,

lower electronics noise.
- Optimum when both equal. 

moderate cooling 0-10°C may help.
- Usually, best bias correspond to lowest gain that overcomes amplifier noise.

Gain stability (PKI only:) 
- Bias : at M=30: δM ~0.5%/V; at M=100: δM~2%/V
- Temperature: equivalent to ~0.5-2.5V/°C  (3V/°C – 200µm thick)
- If temperature unstable control bias.

A. Baron et al
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(a)Saturation Effects. 
- local depletion of voltage

strong signal, high gain, focused avalanche.
- incomplete multiplication 

If interaction in avalanche region
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Energy resolution 

Optimum resolution depends on amplifier 
characteristics, for energy measurements, 
usually 50 to 100 ns best
R. Lecomte et al 

Gain saturation
Moszyński et al, NIM-A 2002
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Time resolution (signal shape)

Electronics contribution.
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Signal from APD into 50 ohms. 

Coaxial cable, no particular 
precautions.

Laser excitation ~120ps wide.

Timing resolution of the 
order of 20 to 30ps have 
been measured using laser 
excitation.

Pulse rise time 
~400 ± 27 ps
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Timing Resolution (APD thickness)

APD special effect.
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Linear fit (expected from saturation velocity :.01-.0093)
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Timing resolution

Time response of various APD 
types., measured with X-rays from 
14-16keV.

The tails in figures a) and b) are 
reduced by raising the energy 
discriminator theshold.

Note >4 order log scale.

After AQR Baron, Hyperfine Interactions 
125(2000) 29-42

Note:
For most APD types, the tail 
is down by 4 orders of 
magnitude in a few ns.
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For thin APDs where transit time is not 
important, if there is a large number  of 
electrons in the pulse then the bias does not 
matter, otherwise, bias close to Vb is best. 
R. Lecomte et al  (NIM-A 1999), 

500 e-

3500 e-
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EVEN thick APD are very fast detectors.
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(c) ESRF Package

Counting rate close to 108 cps.
Extracted dead time 6ns

Results obtained with ESRF module 
developed by J-M Rigal and  J. Morse 
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APD are FAST (data from ESRF)

pneumatic 
attenuators

beam

monochromator (C1)

sample

analyser
(C2)

crossed analyser
(C3)

APD

θ − scan

Si-220 Si-111

Si-220

5x107 cps

Ultra Small angle X-ray scattering: structure, dynamics, and phase 
behaviour of colloidal systems

Bonse-Hart Camera- APD detector setup at ID2

Courtesy T. Narayanan, ESRF ID2

beam divergence: 35 mrad x 20 mrad
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Note signal dynamic >10 orders of magnitude

Silica colloids 
(R ~ 64 nm, φ~ 0.08)
2,6-lutidine + D20 

Courtesy T. Narayanan, ESRF ID2

Quantum beats in nuclear forward scattering (14.4keV X rays) from 
57Fe nuclei, measured at ESRF-ID18 with an APD. Prompt  recovery 
of the APD from X-ray signal saturation occuring at t=0 is essential.
After H Paulsen, Eur. Phys. J. 23(2001)463-472)
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Arrays 
(not very common, but it is a question of demand)

Semi integrated array
Pixel size ~2x2mm Discrete elements 

Pixel size ~3x5mm

20 elements array
pixel size:250x400µm

6x8elements
pixel size:1x1.3mm2

16 elements 
pixel size ~200x650µm

4x4 array 
pixel size ~ 2x2mm
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Summary: APD status

APDs are small, very fast, solid-state devices
Output signal exhibits ~30 ps to ns rise-time.
Counting rate up to 10E8 is feasible.  
No residual signal (4 order of magnitude) after a few ns.
10 order of magnitude in counting rate demonstrated.

Pico to sub-nano second timing resolution ,with 10-20% 
energy resolution is feasible.

APDs are insensitive to magnetic fields.

Low efficiency for X-ray energies > 20keV

Carrier drift time can degrade timing resolution.

Still further developments are possible.



February 2005,  ESRF workshop: “New physics with New Detectors” H. DautetPage 20

Potential developments (Efficiency)

Efficiency at high energy:
• Multi stacks (at least 2 without dead layer).
•Edge entry devices,
•APD-scintillator assembly.

Dead layer at the edge, 
needs to be significantly 
reduced.

mm length 
absorption region

X ray

Efficiency at low energy:
• Geiger mode ? (scintillating fibres, coupled to 

optical photon counting APD array)
• Thinner dead layer (may require slight cooling)
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Potential developments (Timing, imaging)

Timing:
• Edge entry using a thin X-ray beam to remove carrier drift 

variability
(requires an improved edge dead layer.)

• Stack of thin APDs

• Cooling ~ -50 °C to -100°C ,
(below LN2 charges freeze out would be a potential issue).

~20-30µm
~60µm

Imaging:
• NOT a technical issue. Almost any shape and size possible 

•Limitations Total 
active area

Minimum 
pixel size Inter pixel dead space

Regular process S 1cm2

“

V 2  chip 
thickness ~2  chip thickness

Alternate process 
(used for C30927E)

V 10-20µm ?
No dead space, width of 

cross-over region limited by 
inter-electrode resistance.

Optical scan across 2 
elements C30927E).
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Conclusion

Let us know what you need
want
wish
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