PAUL SCHERRER INSTITUT _____

Solid State Detector Development at the Swiss Light Source

Christian Brönnimann Group Leader SLS Detector Group Paul Scherrer Institut <u>CH-5232 Villigen-PSI, Switzerland</u>

PSI with the Swiss Light Source SLS

Solid State Detector Development at the Swiss Light Source

Goal: Show that solid state single photon counting detectors are excellent devices

1) Introduction

2) Mythen Detector for Powder diffraction

3) Pilatus Project Surface diffraction / SAX Protein crystallography Pilatus 6M

4) Ideas for the future

The Swiss Light Source

Detector projects:

X04SA: MS Beamline, PD Station, E=8-30keV:

- MYTHEN detector, large microstrip detector:
- X06SA: PX I Beamline, E=5-20keV
- PILATUS detector, large area pixel detector

X04SA: MS Beamline, SD Station, E=8-30keV:

Single PILATUS Module

Energy range very well suited for Si-Detectors

Solid State Pixel and Microstrip Detectors

Paul Scherrer Institut • 5232 Villigen PSI

Single photon counting hybrid pixel/strip detectors

Properties:

Energy range 4 – 30 keV No dark current No readout noise Excellent point spread function Short readout times: ms Suppression of fluorescent background Very good signal/noise ratio

Applications: Protein Crystallography Powder Diffraction Surface Diffraction Small Angle Scattering

Challenges:

Quality Stability Calibrations, i.e. the precision of the data

Silicon is the optimal choice for SLS-Detectors

The Mythen Detector System

The Mythen Detector System

In-situ peak profile analysis at SLS

Microstrip-detector

In-Situ X-ray diffraction measurements of deformation mechanisms

In nanocrystalline Ni the peak broadening is entirely reversible upon unloading,

deformation mechanism does not built up a residual dislocation network ! as was predicted by large atomistic simulations

H. Van Swygenhoven, Derlet, Budrovic, Van Petegem, Schmitt NUM/ASQ/SLS

Science, 304 (2004) Nat. Mat., June (2004)

Mythen V2 (B. Schmitt)

New 0.25 μ m readout chip designed

Features:

- 128 channels
- Low noise <240 ENC
- 6 bits for threshold fine-tuning
- High count rate: linear to >1MHz (measured with X-rays)
- 24 bit counter with variable length readout, readout time from 32 μ s (4bit) to 64 μ s (24bit) for entire chip/detector
- Frame rates of 10kHz are planned

Current detector will be replaced by V2 Summer this year

The PILATUS Project PILATUS Module Typ I (Aug 2001)

Module Data

- Active Area: 79.6 x 35.3 mm² (continuously sensitive)
- $157 \times 366 = 57462$ pixels
- 16 chips (radiation hard)
- Pixel size 0.217x0.217 mm²
- Readout-time: 6.7 ms
- Energy Range: $E\gamma > 4.5 \text{ keV}$
- Minimum Threshold: 3 keV
- Threshold adjust per pixel
- Rate: ~10 kHz/pixel
- 15-bit counter/pixel
- single photon counting, no readout noise

The Surface Diffraction Station at X04SA

Crystal truncation rods (CTRs) at X04SA

surface-sensitive structural information

Classic: Time-consuming scans with a point detector at points along the CTR New: About 50 times faster with the pixel detector

CTRs of the surface of SrTiO₃

27 CTRs with 1800 data points recorded in a few hours

C. Schlepuetz et al, "Improved data acquisition in grazing-incidence x-ray scattering experiments using a pixel detector", submitted to NIM A, Jan 2005

SAX Pattern of a polystyrene latex solution (H. Toyokawa, M. Suzuki SPring 8)

Single X-ray Resolution!

PILATUS Module Typ II (readout electronics bended)

- Flexprint 6/2 from Dyconex
- Modules can be overlapped
- 80 x 35 mm² continuous sensitive area
- 2 x 8 readout chips
- Power consumption: 7V/1.5 A -> 10.5 W
- Fabrication of 21 Modules: Mai 03- Sept 03

The PILATUS 1M Detector

- Largest pixel detector array for SR
- 6 banks a 3 modules, 1120 x
 967 pixels
- Area: 21 x 24 cm²
- 288 chips->~300x10⁶ transistors
- Readout time: 6.7ms
- Currently 2 frames/s
- 2 frames/ s
- Active area: 85%
- Moderate count rates (<10kHz/pixel)

PILATUS 1M Detector at X06SA

Thaumatin crystal

Data Taking:

Data set: 120° Exp Time: 4s Integration: 1° Beam energy: 11.9 keV Beam intensity: 13.5% D Sample-Det: 128 mm Resolution: 1.4 Å

Analysis:

3 data sets merged full geometrical correction Processed with XDS

R_{obs}: 8.9% (overall) Completeness: 90% (98% up to 1.6 Å)

Zoom in

Paul Scherrer Institut • 5232 Villigen PSI

Thaumatin electron density map Processing with XDS Refinement with SHELXL Completeness: 90.3% R_{sym} 8.4%

Resolution: 1.4 Å

Refinement: R-Factor 28%

blue contours: 2*Fo-Fc (2sigma) red contours: Fo-Fc (2sigma)

Fine $\boldsymbol{\varphi}\text{-slicing}$ with the PILATUS-Detector

short readout-time

- Continuous rotation -> no shutter
- no read-out noise

Fine-phi slicing with continuous sample rotation (raw data)

Fine- ϕ sliced data-sets

- Thaumatin crystal, 11.9keV, continuous sample rotation
- 1s exposure, 6.2ms read-out time, 180 deg
- 50 images/deg (0.02°/s)
- Complete data set ~ 9000s, 9000 frames
- data-set overexposed

PILATUS II Chip

• UMC_25_MMC process; Radiation hard design

PAUL SCHERRER INSTITUT -

- 60 x 97 pixels = 5820 pixels
- Pixel size 172 x 172 um²
- 17.540 x 10.450 mm²
- Count rate: 1MHz/pixel
- 20 bit counter
- Counting timer circuit
- 6 bit DAC for threshold adjustment
- XY-adressable
- Analog output
- 100 MHz LVDS readout (T_{ro} = 1.2 ms)
- Submitted 29.09.04
- Received 1.12.04

4*10⁶ Transistors

PILATUS II Pictures

Paul Scherrer Institut • 5232 Villigen PSI

PILATUS II: Analog Frontend Amplifier

PILATUS II: Analog output of each pixel $E_{cal} = 12 \text{ keV}$

Threshold scans of SLS08-Chip (w.o. Sensor)

Comparison PILATUS I – PILATUS II Chip

Calibrate Readback PILATUS I (3432 pixels, 5% defects)

Calibrate Readback PILATUS II Calibrate Readback PILATUS II (Vcal= 0.5V, 5820 pixels, 0 defects) (Vcal = 0.4 V)

The PILATUS 6M

No of Modules	60
Module size	487 x 195 pixels (90k)
Detector Size	431 x 448 mm ²
No of Pixels	2527 x 2463 pixels (6M)
Spatial resolution	0.172 x 0.172 mm ²
Dynamic range:	20bits
Readout time	~2ms
Frame rate	5-10 Hz
Rate	1 MHz/pixel
Spatial distortion	Flat geometry
Dead area	~8.4 % (7 pixels in x, 17 pixels y)

Status: Currently under design

Pilatus II Module: 100k pixel --> 200kBytes / frame

With fast PCI-DAQ cards: 100MBytes/s

No of Modules	Frame Rate
2 Modules	-> 125 Hz
10 Modules (1M Pixels)	-> 30 Hz
60 Modules (6M)	-> 5 Hz

Chip

<u>Region of Interest Readout</u> (ROI)

Implemented on chip level

RO: 10x10 pixels -> 20 us Transfer: -> 100 us Exposure = 100 us -> 100 X-rays/peak, BG=?

Frame rate -> 8000 Hz

Frame based, gated operation

100

10x10

50

Possible with Pilatus 6M Modules

Higher frame rates -> data reduction!

Image compression: e.g. difference btw neighbouring pixels in image, read out only necessary bits

Usual compression algorithms -> data reduction by a factor of 2.5

For short exposures, suppress zeros maybe factor of 10

Problem: BG extremely sample and position dependent

Fast framing pixel detector for the coherent SAXS BL

- Good quantum efficiency from 3 15 keV
- Rad-hard readout chip
- Single photon counting
- Pixel size: 40×40 to $60 \times 60 \ \mu m^2$
- Count rate: 1 MHz/pixel -> $3 \times 10^8 \text{ x-rays/mm}^2/\text{s}$
- Array size: > 1000 x 1000 Pixels
- Frame rates:
 - 100 Hz for full readout
 - >1 kHz, with data compression read-out

Currently under evaluation

Conclusion

Single Photon Counting Solid state detectors

- are still under development
- enable new experiments
- deliver excellent data
- can be developed application specific

Acknowledgements

R. Dinapoli, E.F. Eikenberry, B. Henrich, G. Hülsen, P. Kraft, M. Naef, H. Rickert and B. Schmitt, *PSI, SLS Detector Group, Villigen-PSI, Switzerland*

H. Toyokawa, M. Suzuki JASRI, Spring 8, Japan

B. Patterson, C. Schulze-Briese, T. Tomizaki, C. Pradervand, A. Wagner, P. Willmott *PSI, Villigen-PSI, Switzerland*

R. Horisberger, S. Streuli, F. Glaus *PSI, Villigen-PSI, Switzerland*